Skip to main content
Article
Building a Basic Block Instruction Scheduler with Reinforcement Learning and Rollouts
Machine Learning (2002)
  • Eliot B. Moss
Abstract

The execution order of a block of computer instructions on a pipelined machine can make a difference in running time by a factor of two or more. Compilers use heuristic schedulers appropriate to each specific architecture implementation to achieve the best possible program speed. However, these heuristic schedulers are time-consuming and expensive to build. We present empirical results using both rollouts and reinforcement learning to construct heuristics for scheduling basic blocks. In simulation, the rollout scheduler outperformed a commercial scheduler on all benchmarks tested, and the reinforcement learning scheduler outperformed the commercial scheduler on several benchmarks and performed well on the others. The combined reinforcement learning and rollout approach was also very successful. We present results of running the schedules on Compaq Alpha machines and show that the results from the simulator correspond well to the actual run-time results.

Keywords
  • reinforcement learning,
  • instruction scheduling,
  • rollouts
Disciplines
Publication Date
2002
Citation Information
Eliot B. Moss. "Building a Basic Block Instruction Scheduler with Reinforcement Learning and Rollouts" Machine Learning Vol. 49 Iss. 2&3 (2002)
Available at: http://works.bepress.com/eliot_moss/12/