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We study spectral properties and the dynamics after a quench of one-dimensional spinless fermions with 
short-range interactions and long-range random hopping. We show that a sufficiently fast decay of the hopping 
term promotes localization effects at finite temperature, which prevents thermalization even if the classical motion 
is chaotic. For slower decays, we find that thermalization does occur. However, within this model, the latter regime 
falls in an unexpected universality class, namely, observables exhibit a power-law (as opposed to an exponential) 
approach to their thermal expectation values. 
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The study of the dynamics and conditions for thermal
ization in isolated many-body systems has a long history in 
theoretical physics [1]. In classical physics, the requirements 
for thermalization are well understood. Boltzmann’s ergodic 
hypothesis holds only if the motion of the individual particles 
is fully chaotic. The situation in quantum systems is less 
clear. Quantum time evolution is described by a linear 
differential equation so that dynamical chaos does not occur. 
The development of the theory of quantum chaos in the 
19801s and 19901s brought a new language and techniques 
to tackle this problem [2]. With respect to thermalization, this 
effort crystallized in two main results: the so-called Berry’s 
hypothesis [3], which states that eigenstates of a classically 
chaotic system can be written as a finite sum of plane waves 
with random coefficients, and the eigenstate thermalization 
hypothesis (ETH) proposed by Deutsch [4] and Srednicki [5], 
which states that observables in individual eigenstates of a 
generic many-body system already exhibit thermal behavior. 

Until a few years ago, technical difficulties prevented a 
systematic study of the proposals above. However, recent 
advances in cold gases systems, together with the enhancement 
of computer power and the development of novel compu
tational methods, are making possible a more quantitative 
comparison. This has dramatically boosted the theoretical 
and experimental interest in nonequilibrium dynamics in 
general and thermalization in particular [6]. For instance, in 
Ref. [7], it was shown experimentally that, after a quench, 
the momentum distribution of a gas of bosons trapped in 
a quasi-one-dimensional (1D) geometry did not relax to the 
thermal prediction. Although this is expected in an integrable 
system [8], it was surprising that such an effect could be 
seen experimentally. The ETH, on the other hand, has been 
confirmed numerically for nonintegrable systems [9], and 
has been shown to break down when approaching integrable 
points [10–12]. 

A better understanding of the conditions for thermalization 
would not only put the foundation of quantum statistical 
mechanics on a more solid ground but also have a strong 
impact in different fields, from cold gases to cosmology, where 

nonequilibrium dynamics play a key role. Here, we provide 
further insights on this problem. We show that many-body lo
calization effects [13] invalidate the expectation that classical 
chaos leads to thermalization of the quantum counterpart. (For 
recent connections between the effect of localization in Fock 
space and thermalization in spin systems, see Ref. [14].) We 
also put forward a route toward thermalization in quantum 
systems characterized by power-law relaxation dynamics. We 
support these results by numerical calculations in the following 
1D spinless fermions system, with long-range hopping and 
short-range interactions,     L L† 1 1 
Ĥ = Jij (f̂i f̂

 
j + H.c.) + V n̂i − 

2
n̂i+1 − 

2
, 

ij i

(1) 
†where f̂ creates a fermion in the site j , and n̂j is the number j 

operator in the site j . The hopping term is built by means of a 
Gaussian random distribution, with zero mean (Jij ) = 0, and     −12α|i − j |((Jij )

2) = 1 + . (2)
β

In the limit V = 0, the properties of (1) depend on α but 
not on β >  0 [15]. For α <  1, eigenstates are delocalized 
and the spectral correlations are described by Wigner-Dyson 
(WD) statistics. For α >  1, eigenstates are localized and 
spectral correlations are described by Poisson statistics. For 
α = 1, eigenstates are multifractal and spectral correlations 
are intermediate between WD and Poisson [16,17]. We then 
fix β = 0.1 and V = 1. (The latter sets the unit of energy 
throughout this Rapid Communication, and kB = 1.) These 
values were chosen to minimize finite-size effects (β « 1) and 
at the same time to avoid the trivial insulator limit that occurs 
if the potential energy is much larger than the kinetic one [11]. 
Likewise, if the interaction is too weak, thermalization may 
not occur [10]. Finally, we note that these types of long-range 
Hamiltonians have been used to model systems with strong 
dipolar interactions [18]. 
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FIG. 1. (Color online) Scaling variable η [see Eq. (3)] as a  
function of α for different system sizes but the same filling factor, 
1/3. For α ; 1 (α 2 1.2), η decreases (increases) with the system 
size. This is a signature of a metallic (insulating) phase. The number 
of realizations is 10 000, 10 000, and 400 for L = 12, 15, and 18, 
respectively. 

We first use a finite-size scaling analysis to investigate the 
effect of the many-body interactions on the spectrum [17]. 
This is a powerful tool to study many-body localization in the 
presence of interactions [11,13]. We compute the eigenvalues 
of the Hamiltonian (1) for different sizes and values of α 
utilizing standard diagonalization techniques. In all cases, the 
filling factor p/L = 1/3, where L is the system size and p 
is the number of particles. The spectrum thus obtained is 
appropriately unfolded, i.e., it is rescaled so that the spectral 
density on a spectral window comprising several level spacings 
is unity. The number of disorder realizations considered is 
such that statistical fluctuations are negligible. As a scaling 
variable we choose the function η [17] related to the variance 
var = (s 2) − (s)2 of the level spacing distribution P (s). P (s) 
is the probability of finding two neighboring eigenvalues at a 
distance s = (Ei+1 − Ei)/,, where , is the local mean level 
spacing, and 

η = [var − varWD]/[varP − varWD]. (3) 

varWD = 0.286 (varP = 1) is the value of the variance for a 
disordered metal (insulator) in the thermodynamic limit and  (s n) = s nP (s) [19]. An increase (decrease) of η with L 
signals that the system will be an insulator (metal) in the 
thermodynamic limit. 

Figure 1 depicts results for η vs α for different sizes. It 
is apparent that for α 2 1.2 the parameter η increases with 
system size, as is expected of an insulator. Hence, localization 
takes place in the interacting system, in contrast to the classical 
counterpart, which is chaotic for any α. For  α ; 1, on the 
other hand, η behaves as expected of a metal. To be certain 
whether the system is metallic for α ≈ 1, much larger systems, 
currently not accessible numerically, need to be studied. 

We now investigate the thermalization properties of the 
Hamiltonian (1). We aim to (i) identify a region of α’s 
for which the system does not thermalize even though the 
classical counterpart does, (ii) see how that region relates 
to the localization regime found by the spectral analysis, 
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(iii) investigate the microscopic origin of the lack of ther
malization, and (iv) study the approach to equilibrium in the 
region of α’s for which thermalization eventually occurs. 

In order to proceed, we first note that time scales and finite-
size effects relevant to the study of quantum thermalization 
may depend on the observable and particle statistics [10,12]. 
However, for few-body observables, it is generically expected 
that thermalization occurs away from integrability. Here, we 
report results for two of those observables: the momentum 
distribution function [ n̂(k)] and the density-density structure 
factor [ N̂ (k)], L L 

ik(l− † ik(l−n̂(k) = 
1 

e m)f̂ f̂  , N̂ (k) = 
1 

e m)n̂ n̂ ,l m l mL L 
l,m l,m 

(4) 

which are the Fourier transforms of the one-particle and 
density-density correlation matrices [20], respectively. Both 
observables can be measured in ultracold gases experiments. 

In all the cases shown below, we start from an eigenstate 
of the Hamiltonian (1) in a certain realization of the disorder. 
Then, we change to another disorder realization for the same 
α, and study the time evolution of the initial state with this 
final Hamiltonian, Ĥfin. This procedure is usually known as 
a quench. The initial state [|\(0))] is selected such that the 
time evolving system has an energy E = (\(0)|Ĥfin|\(0)), 
which, for every disorder realization, is the same as the 
one of a thermal state with temperature T = 10.0 (E = 

− ˆ − ˆHfin/TTr{e Ĥfin}/Tr{e Hfin /T }). This yields energies that fall 
close to the center of the spectrum of the final Hamiltonian. In 
what follows, Oij are the matrix elements of a given observable 
in the eigenstates of the final Hamiltonian, Oij = (ψi |Ô|ψj ), 
and Cj is the overlap between the initial state and |ψj ), 
Cj = (ψj |\(0)). 

In order to determine whether thermalization occurs fol
lowing the quench, one needs to find a meaningful quantity to 
compare with the microcanonical (thermal) average, Omicro = 

1 
j Ojj , where N,E is the number of states in the N,E

 
microcanonical window (centered around E, and with ,E 
selected such that the average is robust against small changes 
of ,E). If relaxation takes place for the observables of 
interest, and the spectrum is nondegenerate, the infinite time 
average (also known as the diagonal ensemble prediction)  
Odiag = |Cj |2Ojj is the right choice [9]. We first compute j 
the normalized difference between these two ensembles,  |Odiag(k) − Omicro(k)|k,O =  , (5)

Odiag(k)k 

and then average it over different disorder realizations to obtain 
(,O)dis. Note that here, and in what follows, by “O” we mean 
“n” or “N” for the momentum distribution and structure factor, 
respectively. 

In Fig. 2, we depict (,n)dis and (,N)dis for different values 
of α versus system size. Thermalization occurs if (,O)dis 

vanishes in the thermodynamic limit. A nonzero value of 
(,O)dis in this limit indicates that the observable O relaxes 
to a nonthermal expectation value. For α >  1, a weak size 
dependence is observed for the largest system sizes we can 
study, with (,O)dis likely saturating to nonzero values for 
α 2 1.2. Therefore, thermalization is not expected to occur in 
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FIG. 2. (Color online) (,n)dis and (,N)dis [see Eq. (5)], as a 
function of the system size, for α = 0.6, 0.8, 1.0, 1.2, and 1.4. Points 
correspond to (L,p) = (9,3), (12,4), (15,5), and (18,6). The disorder 
average is performed over at least 8500 different realizations for 
L � 15, and 1020 for L = 18. The classical dynamics is chaotic but 
there is no thermalization for large α due to localization effects. 

this regime. Interestingly, as the value of α decreases below 
α ∼ 1, the normalized differences exhibit a fast decrease for 
the smallest systems shown. They become much smaller than 
those for α 2 1.2 for the largest system sizes accessible here, 
for which (,O)dis is very close to zero within our error bars 
and still decreasing with increasing system size. These results 
suggest that thermalization occurs in this regime. 

In order to further support the conclusions of the finite-
size scaling analysis we look at the actual diagonal and 
microcanonical expectation values of observables for several 
quenches. Results for n(k = 0) are shown in Fig. 3 as a function 
of the energy. In all regimes, the microcanonical results can 
be seen to be almost independent of the energy, while the 
diagonal ensemble results exhibit fluctuations that increase 
as α increases. Hence, increasing α increases the difference 
between the infinite time average and the microcanonical 
results, as well as increases the dependence of the infinite 
time average on the initial state selected. 

A natural question that follows is whether the absence of 
thermalization, as well as the sensitivity to the initial state 
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FIG. 4. (Color online) (,n max)dis and (,Nmax)dis (main panels), ii ii 
avg avg and (,n )dis and (,N )dis (insets) vs system size. Lines are the ii ii 

same as in Fig. 2. As a consequence of localization effects, ETH does 
not hold for large values of α. 

selected, for large α, is related to the breakdown of ETH (as 
seen in clean systems approaching an integrable point [10,11]) 
or it is rather related to some atypical properties of the overlaps 
Cj . To answer that question, we compute the normalized 
difference between the observable in each eigenstate and in 
the microcanonical ensemble, 

|Oii(k) − Omicro(k)|k,Oii = . (6) 
k Omicro(k) 

This allows us to determine, for each disorder realization, 
the maximal difference within the microcanonical window 
,Omax avg = Max[,Oii],E as well as the average ,O = ii ii 

1 ,Oii . We then average both quantities over different N,E i 
avg disorder realizations to obtain (,Omax)dis and (,O )dis.ii ii 

maxIn the main panels in Fig. 4, we depict (,n )dis andii (,Nmax)dis vs L for different values of α. ETH holds when ii (,Omax)dis → 0 for  L → ∞. In the range of sizes that we can ii 
study, this behavior is apparent for α ; 1. For α 2 1.2, we 
find clear indications that ETH fails, which can be understood 
as a result of localization induced by disorder [13]. A very 
similar behavior is observed in the insets of Fig. 4, which 

avg avg show (,n )dis and (,N )dis. In the region α ≈ 1, on the ii ii 
other hand, our results are not conclusive. This is an interesting 
problem for future works as, in the noninteracting limit, α = 1 
corresponds to a metal-insulator transition characterized by 
multifractal eigenstates. We speculate that fluctuations at all 
scales associated with multifractality may lead to interesting 
behavior in the many-body properties of the system. 

avg The robustness of the results for (,Omax)dis and (,O )dis,ii ii 
well as their clear correlation with the thermalization as

E E E 
indicators in Fig. 2, allow us to conclude that (i) the lack 

FIG. 3. (Color online) Microcanonical and diagonal results for (occurrence) of thermalization is directly related to the failure 
n(k = 0) in 51 different quenches. The systems have 18 sites and six (validity) of ETH, and (ii) that ETH holds and thermalization 
particles, with α = 0.6, 1.0, and 1.4. occurs only for values of α ; 1. For α greater than, and not 
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and (δN(t))dis as a function of time, t , for three different 
0.1 values of α and the two largest system sizes that we can 
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FIG. 5. (Color online) Time evolution of (δn(t))dis and (δN (t))dis 

[see Eq. (7)] for different α’s. Thick lines are for 18 sites and six 

study. For α >  1, an extremely slow relaxation dynamics can 
be observed, and the system may never reach the infinite 
time-average prediction in any experimentally relevant time 
scale. For α ; 1, the relaxation dynamics seen in those plots 
is quite unexpected. We find that (δn(t))dis and (δN(t))dis 

exhibit a clear power-law decay (∝ t−γ ). The region over 
which the power-law decay is observed extends over a decade 
and increases with increasing system size. As the value of α 
decreases (and localization effects decrease) the exponent γ 
of the power law increases. However, no typical time-scale 
emerges during relaxation [22]. This indicates an unexpected 
route to thermal equilibrium in many-body quantum systems 
characterized by a power law rather than an exponential 
decay. 

After these results, it is natural to speculate whether such 
power-law behavior also occurs in clean systems. Theoreti
cally, it is well known that in the semiclassical limit classical 
cantori [23], remnants of the Kolmogorov-Arnold-Moser 
(KAM) tori induce slow diffusion in phase space and power-
law localization of eigenstates in the one-body problem [24]. 

particles. Thin solid lines are power-law fits to the data. Other thin 
lines are the corresponding results for 15 sites and five particles. An 
average over 8500 (1020) realizations has been carried out for the 
15-site (18-site) system. 

too close to, one, the quantum system will not thermalize even 
though the dynamic of the classical counterpart is chaotic. 

A fundamental problem that has not been addressed in 
previous computational studies—due to large fluctuations 
that occur during the time evolution in exact diagonalization 
studies (because of finite-size effects) and to the limited times 
accessible in time-dependent density-matrix renormalization 
group (t-DMRG) approaches [21]—is that of how observables 
approach their thermal values during the relaxation dynamics. 
The naive expectation is that the approach should be exponen
tial as in classical systems, where a few collisions per particle 
suffice for the system to relax to thermal equilibrium. However, 
to the best of our knowledge, such a behavior has yet to be 
seen in the experiments or numerical simulations of isolated 
systems in the quantum regime. Disordered systems provide 
a unique opportunity to address this problem as the average 
over disorder realizations reduces dramatically fluctuations 
due to finite-size effects. In what follows, we compute the 
time evolution of the difference 

k |O(k,t) − Odiag(k)|
δO(t) =	 , (7)

Odiag(k)k 

and then average it over different disorder realizations to 
obtain (δO(t))dis [10]. In Fig. 5, we show results for (δn(t))dis 

[1] L. Boltzmann, Creeles J. 98, 68 (1884). 
[2] H. J. Stockmann, Quantum Chaos: An Introduction (Cambridge 

University Press, Cambridge, U.K., 1999). 
[3] M.	 V. Berry, J. Phys. A: Math. Gen. 10, 2083 

(1977). 
[4] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991). 

Therefore, it is plausible that in certain region of parameters 
the approach to equilibrium in systems controlled by cantori 
is also power-law-like. Interestingly, indications of power-law 
relaxation have already been seen in classical systems [25] 
and, experimentally, in a strongly correlated one-dimensional 
Bose gas [26]. 

In conclusion, we have studied an interacting many-body 
disordered system that exhibits a transition between metallic 
and insulating behavior. Remarkably, we have identified a 
region of parameters (α 2 1.2) in which, due to localization 
effects, ETH fails and thermalization does not take place even 
if the system is nonintegrable [14]. For α ; 1, ETH is valid and 
thermalization occurs. Furthermore, in the latter regime, we 
have found a route toward thermal equilibrium characterized 
by a power-law approach to the thermal expectation values 
and, hence, by the lack of a well-defined equilibration time. 
The relevance of this scenario to experiments with ultracold 
gases, as well as clean strongly correlated systems, is a topic 
that requires future exploration. 

This research was supported by NSF under Grant No. 
OCI-0904597 (E.K. and M.R.) and by the U.S. Office 
of Naval Research (M.R.). A.M.G. acknowledges support 
from Galileo Galilei Institute, FCT (PTDC/FIS/111348/2009), 
Marie Curie Action (PIRG07-GA-2010-26817), and EPSRC 
(EP/I004637/1). A.R. acknowledges support from the Spanish 
Government Grants No. FIS2009-11621-C02-01 and No. 
FIS2009-07277. 

[5] M. Srednicki, Phys. Rev. E 50, 888 (1994). 
[6] M. A. Cazalilla and M. Rigol, New J. Phys. 12, 055006 (2010); 

A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, 
Rev. Mod. Phys. 83, 863 (2011). 

[7] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature (London) 440, 
900 (2006). 

050102-4 

http://dx.doi.org/10.1088/0305-4470/10/12/016
http://dx.doi.org/10.1088/0305-4470/10/12/016
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1088/1367-2630/12/5/055006
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693


RAPID COMMUNICATIONS 

QUANTUM QUENCHES IN DISORDERED SYSTEMS: . . .  

[8] M.	 Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. 
Rev. Lett. 98, 050405 (2007); M. Rigol, A. Muramatsu, and 
M. Olshanii, Phys. Rev. A  74, 053616 (2006). 

[9] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452, 
854 (2008). 

[10] M. Rigol, Phys. Rev. Lett. 103, 100403 (2009); Phys. Rev. A 80, 
053607 (2009). 

[11] L. F. Santos and M. Rigol, Phys. Rev. E 81, 036206 (2010); 82, 
031130 (2010). 

[12] C. Neuenhahn and F. Marquardt, e-print arXiv:1007.5306; 
G. Roux, Phys. Rev. A  81, 053604 (2010). 

[13] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. 321, 
1126 (2006); V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 
155111 (2007); A. Pal and D. A. Huse, ibid. 82, 174411 (2010); 
C. Monthus and T. Garel, ibid. 81, 134202 (2010). 

[14] C. Gogolin, M. P. Muller, and J. Eisert, Phys. Rev. Lett. 106, 
040401 (2011); E. Canovi, D. Rossini, R. Fazio, G. E. Santoro, 
and A. Silva, Phys. Rev. B  83, 094431 (2011). 

[15] A. D. Mirlin, Y. V. Fyodorov, F.-M. Dittes, J. Quezada, and T. H. 
Seligman, Phys. Rev. E 54, 3221 (1996); E. Cuevas, M. Ortu ̃no, 
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