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Abstract. Machine learning techniques have been widely used in the study of strongly
correlated systems in recent years. Here, we review some applications to classical and quantum
many-body systems and present results from an unsupervised machine learning technique, the
principal component analysis, employed to identify the finite-temperature phase transition of
the three-dimensional Fermi-Hubbard model to the antiferromagnetically ordered state. We
find that this linear method can capture the phase transition as well as other more complicated
and nonlinear counterparts.

1. Background and Introduction
We humans and other animals owe our often effortless recognition of objects, faces, voices and
other cues to the highly complex neural network in our brain. While we cannot exactly model
the tens of billions of neurons, each with a few thousand connections to other neurons, in our
brains using the current computer technology, biological neural networks have certainly been the
model and inspiration for the development of deep artificial neural networks (ANN), and more
broadly, machine learning techniques. Their practical applications, mostly in the technology
industry, such as Google’s deepmind [1], Apple iPhone’s voice and face recognition, Netflix’s
narrowing down of movie preferences for its customers, are often designed to perform specific
tasks.

Machine learning paradigms in science have also been around for decades, for example, in
the studies of connections between neural networks and spin glass models and how they can be
used as memories [2, 3, 4, 5, 6, 7, 8]. However, it was the development of efficient algorithms
for training deep networks that led to the rise of popularity of machine learning and its physical
applications in recent years. For example, the seminal paper by Carrasquilla and Melko [9],
which focused on learning algorithms for distinguishing phases of matter, or by Carleo and
Troyer [10], which focused on using ANNs as superior variational ansatz for obtaining the ground
state wavefunction of quantum many-body systems, both in 2016 paved the way for hundreds of
other studies in the field of statistical mechanics and quantum many-body physics that followed.

In Ref. [9], the authors replace images of animals, objects, or handwritten digits, often used
to showcase the power of novel machine learning algorithms in the industry, by Ising “images”;
configurations of binary spins from Monte Carlo (MC) simulations of the Ising model on two-
dimensional (2D) geometries. In one case, a simple fully-connected feed-forward ANN was
trained, using these images at different temperatures, to identify the location of the critical
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temperature of the 2D Ising model. They not only showed that their network could locate the
phase transition using images it had not seen during the training, but that the trained network
could also be used to identify the same transition on other geometries (e.g., the triangular lattice)
with over 99% accuracy. They showed that the network output in this case is essentially the
magnetization.

In studies that followed immediately [11, 12], the question explored was whether similar
techniques can be applied to quantum mechanical models, more specifically, to fermionic lattice
models. For quantum lattice models, such as the Fermi-Hubbard model [13, 14], and their
quantum Monte Carlo (QMC) treatments [15], the question is, what type of “images” can
be used for training? Unlike for the Ising model, where MC simulations sample directly
over configurations of the constituents (spin-1/2), the configurations sampled over in QMC
simulations of fermionic models are auxiliary fields and involve an “imaginary time” dimension.
In Ref. [11], it was shown that ANNs cannot be trained to identify the quantum phase
transition between a semi-metal and an antiferromagnetic Mott insulator in the honeycomb
lattice Hubbard model using these fields directly, at least not when geometrical information was
not preserved. Instead, using calculated Green’s functions as inputs for ANNs, they showed
that the networks can learn to accurately predict the location of the transition even if training
has been performed using data far from the transition point. In Ref. [12], it was shown that
raw auxiliary field configurations can in fact be used by ANNs to learn to identify the finite-
temperature transition of the three-dimensional (3D) Fermi-Hubbard model from a paramagnetic
to an antiferromagnetic phase using ANN architectures that respect the geometry of the model
and involve so-called convolutional layers for extracting local features. Moreover, it was shown
that the knowledge learned during training can be transferred to locate the same phase transition
in a model with a different strength for fermionic interactions or at incommensurate fillings.

The question of machine-assisted phase discovery was also explored early on using the so-
called unsupervised machine learning algorithms for both classical [16, 9, 17, 18, 19] and quantum
systems [20, 21, 22]. For this class of methods, labels for the data (e.g., whether or not they
belong to the ordered phase) need not be provided by a “supervisor” during the training process.
Instead, unsupervised algorithms are designed to learn about similarities and dissimilarities
among the data on their own during the training and categorize data based on that information.
The categorization is meant to reduce the huge dimensionality of the configuration space (e.g.,
2N for the Ising model, where N is the number of spins) to a few “latent” dimensions where the
similarity of configurations manifests itself in the clustering of corresponding data points. Such
visualizations can be clearly seen in Refs. [16, 9, 18] and other studies. One can then classify a
new configuration that has not been involved in the dimension reduction routine by projecting
it onto the latent space. A summary of these unsupervised techniques is provided in Ref. [21].

Here, the question is again, which techniques can see through quantum fluctuations and
effectively classify auxiliary configurations obtained during QMC simulations? And, how does
the classification depend on the nature of the phases under investigation? Features observed
in the reduced dimensional space can provide insights into properties and symmetries of the
system as a tuning parameter like the temperature is varied, and sudden changes can hint at
phase transitions. Several nonlinear algorithms have already been shown to exhibit nontrivial
features in dimensionally-reduced QMC data for the 2D and 3D Hubbard models [21]. However,
a linear technique called the principal component analysis (PCA) [23] has not shown a consistent
performance. For example, no discernible features could be found for the quantum many-body
localization transition of the random-field Heisenberg model [20], whereas transitions to certain
magnetic or charge density wave phases could be captured for the Fermi-Hubbard model [22].

Here, we consider the case of the half-filled 3D Fermi-Hubbard model and its finite-
temperature transition to the long-range antiferromagnetic phase and examine to what extent
this transition can be captured using the PCA. As a benchmark, we first reproduce results from
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the PCA for the 2D Ising model.

2. Models
2.1. 2D Ising Model
The energy of the ferromagnetic Ising model on the square lattice is written as

E = −J
∑
〈ij〉

σiσj , (1)

where σi = ±1, 〈ij〉 denotes that i and j are nearest neighbors, and J is the strength of the
coupling, which we set to 1 as the unit of energy for this model. The critical temperature for
this model is Tc = 2

ln(1+
√

2)
= 2.27.

We use a Markov chain MC algorithm with the Metropolis algorithm to obtain 10,000
configurations, 100 configurations per each of the 100 temperature values on a uniform grid
between 1.5 and 4.0 for a 20×20 system. Starting with a random configuration, in this algorithm,
a site i is picked at random and a move σi → −σi is proposed. The move is accepted with the
probability min[1, e−β∆E ], where β is the inverse temperature, and ∆E is the total energy after
the spin slip minus that before the flip. We employ a simulated annealing algorithm in which
the temperature is reduced adiabatically using an exponential protocol during the simulations.
This will allow the system to settle into one of the two degenerate ferromagnetic ground states
that break the time reversal symmetry (all up spins or all down spins).

2.2. 3D Fermi-Hubbard Model
The Fermi-Hubbard Hamiltonians is expressed as

H = −t
∑
〈ij〉σ

c†iσcjσ + U
∑
i

ni↑ni↓ (2)

where ciσ (c†iσ) annihilates (creates) a fermion with spin σ on site i, niσ = c†iσciσ is the number
operator, U is the onsite Coulomb interaction, and t is the hopping amplitude, which we take
to be unity. We consider the model with an average of one fermion per lattice site (half-filled
limit) on a cubic lattice where it has been shown that the critical temperature for the transition
to the antiferromagnetic phase is maximal around TN = 0.35 for U ∼ 9 [24, 25].

We use the determinant QMC algorithm [15, 26, 27] on a N = 4 × 4 × 4 cluster and 32
temperatures ranging from 0.10 to 0.65. As mentioned above, the auxiliary spin configurations
here live in a D + 1 dimensional space, where D is the physical dimensionality (here 3). The
Metropolis algorithm, which is performed separately for each temperature, proceeds with the
same Markov chain as for the Ising model. However, the acceptance probability for a spin flip has
to be computed using “fermion determinants” [15, 26]. In Fig. 1, we show a D + 1 dimensional
spin configuration for D = 1. The vertical axis β is discretized with a spacing ∆τ . In order to
keep the number of auxiliary spin variables (“features” in our PCA analysis below) fixed, we fix
the number of imaginary time slices to 200. As a result, ∆τ varies between 0.050 and 0.008 in
our temperature range, rendering systematic errors negligible. Details of the method and other
parameters we have used can be found in Ref. [12].

3. Principal Component Analysis
PCA is essentially a transformation of the coordinate system in a high-dimensional space to
a set of principal axes determined through diagonalizing the covariance matrix of the data.
The eigenvectors corresponding to the largest eigenvalues of the covariance matrix indicate the
principal directions along which the data have the largest variance. After the PCA is performed
we often project the data onto the two principal directions with the largest eigenvalues.
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Figure 1. A random configuration of auxiliary spins during the QMC simulation of the one-
dimensional Fermi-Hubbard model with a system of N sites at an inverse temperature of β. The
horizontal axis represents the spatial dimension and the vertical axis represents the imaginary
time dimension that extends from 0 to β. The latter is discretized with the step ∆τ .

3.1. The Algorithm
The PCA algorithm is as follows:

(i) Center the data. Each data point is a collection of “features”, or components in the original
space. For example, an Ising configuration can be thought of as a data point in a N
dimensional space, where N is the system size and components are σi. In this step, the
mean value of every feature among all the data is subtracted.

(ii) Create the matrix of data X. Each data point forms a row, columns represent features,

(iii) Compute the covariance matrix of data: XTX.

(iv) Compute eigenvalues λn and normalized eigenvectors vn of the covariance matrix.
Eigenvalues represent the variance of each principal axis.

(v) Project data onto the eigenvectors: Pn = X · vn. These are the principal components.

4. Results
4.1. 2D Ising Model
In Fig. 2, we show results after applying the above PCA algorithm to the MC Ising configurations.
The size of the covariance matrix, and therefore, the number of principal components is N = 400.
The left panel in this figure shows the eigenvalues of the covariance matrix, where the largest
eigenvalue is an order of magnitude larger than the rest. This implies that the data are mostly
spread out along the first principal direction. We note that we perform the PCA on data from
all the temperatures at once as opposed to a separate PCA calculation for every temperature.

Projecting the configurations onto the principal directions corresponding to the largest two
eigenvalues of the covariance matrix of data, we can visualize any patterns developing as the
temperature dips below Tc. In the right panel of Fig. 2, we plot the data from all temperatures in
the space of the first two principal components. The color of symbols denotes the temperature
indicated on the color bar. We observe a well-defined disk of data points corresponding to
high temperatures above Tc. As the temperature decreases to near the critical value, the data
spread out in both the P1 and P2 directions. At lower temperatures below Tc, we find that an
overwhelming number of data points gather in a cluster at large P1. We infer that these data
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Figure 2. PCA applied to the 2D Ising model. Left: Eigenvalues Pi of the covariance matrix of
spin configurations on a 20× 20 square lattice. We find that the second eigenvalue is more than
an order of magnitude smaller than the first eigenvalue. Right: The projection of data to the
space of first two principal components. Colors denote the temperature. The high-temperature
disk of data points suddenly changes to a cluster for low-temperature data points at larger P1

as one crosses the critical temperature.

points correspond to the ordered phase. We point out that the reason for observing a single low-
temperature cluster as opposed to two, e.g., as in Refs. [16, 9, 18], is that we have used simulated
annealing which causes the system to gradually settle in one of the two degenerate ferromagnetic
ground states of the model, as opposed to the possibility of systems at close temperatures falling
into phases with magnetizations of opposite sign.

4.2. 3D Fermi-Hubbard Model
We now turn to the quantum model and apply the same technique to data obtained from QMC
for the auxiliary spin configurations of the 3D Fermi-Hubbard model. Figure 3 summarizes
our findings. In this case, the dimension of the covariance matrix (the number of features) is
N×200 = 12, 800. In the left panel of Fig. 3, we show the first 3,000 eigenvalues of the covariance
matrix. The largest is more than an order of magnitude larger than the rest of the eigenvalues,
again suggesting that there is mostly one special direction in the high-dimensional configuration
space where the data have a relatively large variance. Finding the first two principal components
allows us to project the data in a two-dimensional space and visualize them.

The results are shown in the right panel of Fig. 3. There, the evolution of clustering of
data points as a function of temperature is less dramatic than in the Ising model across the
critical temperature. As the temperature decreases the data simply spread out along P1 and
they do so in a symmetric way; the number of points with P1 > 0 does not seem to be
significantly different form those with P1 < 0. The smoother evolution is partly a reflection
of the fact that the determinant QMC used in this work is formulated using the fermion spins
represented in the z basis, whereas the model has spin rotational symmetry and does not have a
preferred direction; the antiferromagnetic ordering below TN can happen in the xy plane for some
instances, which will manifest itself essentially as randomness in the configuration of (auxiliary)
spins represented in the z basis. We point out that although the auxiliary spins do not exactly
represent particle spins, it can be shown that their correlation functions are proportional to the
correlation functions of the actual fermion spins [28, 29].

We believe that another contributor to the lack of distinct low-temperature clusters in the
Hubbard data shown in Fig. 3 is the existence of quantum fluctuations in the system, i.e.,
preventing a perfectly anti-aligned spin configuration in any spin direction from being the exact
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Figure 3. Same as Fig. 2 but for the half-filled 3D Hubbard model with U = 9. We show only
the first 3,000 eigenvalues in the left panel. Similarly to the Ising case, the largest eigenvalue
is at least an order of magnitude larger than the rest. Here, the evolution of clustering of data
points as a function of temperature is less dramatic than in the Ising model across the critical
temperature. As the temperature decreases the data points simply spread out along P1.

ground state of the model, unlike for the classical model. Nevertheless, it has been shown that
indicators that quantify the transformation of the distribution of data in the reduced-dimensional
space as the temperature is varied can represent physically meaningful properties such as the
magnetic structure factor [21]. The distribution in the right panel of Fig. 3 obtained through
a linear machine learning algorithm seems to be as useful in gaining insight into the phase
transition of the model as those obtained through more sophisticated and nonlinear methods
applied to the same data [21].

5. Summary
Considering two classical and quantum many-body systems, both exhibiting a continuous finite-
temperature phase transition to magnetically ordered phases, we study how a linear machine
learning technique, the principal component analysis, can provide clues for the location and
nature of the transitions using configurations generated during MC or QMC simulations of the
model and without the calculation of any conventional properties. We find that, similar to
what was found in past studies with the 2D Ising model, the PCA can signal the transition
for this model with a high degree of accuracy. Around Tc, we observe a sudden shift in the
distribution of dimensionally reduced Ising configurations in the space of the first two principal
components from a central disk at high temperatures to a different cluster at T . Tc. This is
consistent with the use of simulated annealing in our MC simulations. We find that the picture
is different for the data corresponding to the 3D Fermi-Hubbard model. Due to the specific
basis chosen for the QMC simulations and the existence of quantum fluctuations, in that case,
the dimensionally-reduced data simply spread out from a central region as the temperature is
decreased. However, despite that, quantifying the spread can likely results in reliable indicators
for the phase transition.
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