Skip to main content
Article
Spin-imbalance in a 2D Fermi-Hubbard system
Science (2017)
  • Peter T. Brown, Princeton University
  • Debayan Mitra, Princeton University
  • Elmer Guardado-Sanchez, Princeton University
  • Peter Schauß, Princeton University
  • Stanimir S. Kondov, Princeton University
  • Ehsan Khatami, San Jose State University
  • Thereza Paiva, Universidade Federal do Rio de Janeiro
  • Nandini Trivedi, Ohio State University - Main Campus
  • David A. Huse, Princeton University
  • Waseem S. Bakr, Princeton University
Abstract
The interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model—a paradigm for strongly correlated fermions on a lattice—in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order. We observed nonmonotonic behavior of the local polarization with doping for strong interactions, which we attribute to the evolution from an antiferromagnetic insulator to a metallic phase. Our results pave the way to experimentally mapping the low-temperature phase diagram of the Fermi-Hubbard model as a function of both doping and spin polarization, for which many open questions remain.
Publication Date
September 29, 2017
DOI
10.1126/science.aam7838
Publisher Statement
This is the Preprint titled "Observation of canted antiferromagnetism with ultracold fermions in an optical lattice" of an article that was published in Science, volume 357, issue 6358, 2017. The Version of Record is available online at this link.

SJSU users: use the following link to login and access the article via SJSU databases.
Citation Information
Peter T. Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, et al.. "Spin-imbalance in a 2D Fermi-Hubbard system" Science Vol. 357 Iss. 6358 (2017) p. 1385 - 1388 ISSN: 0036-8075
Available at: http://works.bepress.com/ehsan_khatami/41/