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Abstract. QUEST is a part of the SciDAC project on next generation multi-scale quantum
simulation software for strongly correlated materials. It is a Fortran 90/95 package that
implements the determinant quantum Monte Carlo (DQMC) method for simulation of
magnetic, superconducting, and metal-insulator transitions in model Hamiltonians. In this
paper, we show how QUEST is capable of treating lattices of unprecedentedly large sizes
and how this can be fruitful in the study of the physics of trapped fermionic system, in the
development of more efficient solvers for Dynamical Mean Field Theory (DMFT) and as a tool
to test and, in the future, improve diagrammatic approaches such as the Parquet approximation.
We will also present a range of synergistic activities on the development of stable and robust
numerical algorithms and hybrid granularity parallelization scheme that combines algorithmic
and implementation techniques to high-performance DQMC simulation. The work reported
here is a key step forward in achieving the goals of our SciDAC project.

1. Introduction

QUEST is a Fortran 90/95 package that implements the determinant quantum Monte Carlo
(DQMC) method for the finite temperature simulation of system of fermions [1]. This method
has two highly attractive features: a computational time that scales linearly with inverse
temperature and a sign problem milder than that of other stochastic approaches. One
of its numerical kernels, a long multiplicative chain of ill-conditioned matrices, is however
numerically unstable and prevents a simple implementation of the method. However, thanks
to a deeper understanding of the origin of these numerical problems, it has become possible
to extend the domain of applicability of this method to systems containing several hundreds
of fermions. At the software level, our development of QUEST serves then three purposes.
(1) To improve simulation performance by using new algorithms, like delayed update, and

10 Part of this work was completed while this author was a postdoctoral scholar at the Department of Computer
Science, University of California, Davis.



by integrating modern numerical kernels. (2) To integrate existing programs by modularizing
their computational components. (3) To assist new simulations development with, for example,
the ability of creating new lattice geometries. At the application level, the use of QUEST
has provided several important new insights into the physics of correlated quantum systems.
QUEST has been used to treat lattices of unprecedentedly large sizes to allows us for accurate
extraction of the interaction dependence of the antiferromagnetic order parameter (using finite-
size scaling) to map its evolution from the weak to the strong coupling Heisenberg limit [8].

2. Simulation of confined strongly-interacting gases

The possibility of trapping rarefied atomic gases using magnetic fields and the ensuing possibility
of studying their properties is one of the most active areas of research in atomic and condensed
matter physics. The further use of standing electromagnetic waves causes the atoms to
experience the presence of a periodic potential and allows the experimental realization of systems
that are described by formally simple Hamiltonians. The interest in these systems relies on the
fact that these same Hamiltonians have been studied in the condensed matter community
for decades and, through simulations, helped understand many important materials properties.
However, these Hamiltonians have resisted both an exact solution and robust numerical solution
over the full parameter range of interest.

Optical lattices are then envisioned as simulators of these simple models, free of the limitation
of numerical and analytical techniques. These experiments face, however, different challenges.
Chief amongst them is the presence of the magnetic confining potential that causes the density to
vary across the lattice, at odds with the homogeneous situation that one would like to emulate.
In Ref.[3], we have employed QUEST to study the Hubbard model in the presence of a confining
potential to address the effect of the latter on some selected short range properties and to
investigate their evolution as a function of the interaction potential. The DQMC method allows
the treatment of temperatures that are comparable or lower than those presently achievable
in experiments, and QUEST can manage large enough systems that both magnetic and paired
phases can be detected in the same simulation.

-15 -10 -5  0  5  10  15

a. Density

0.0

0.3

0.6

0.9

1.2

-15 -10 -5  0  5  10  15

b. Density fluctuations
×10-1

0.0

0.9

1.8

2.7

-15 -10 -5  0  5  10  15

c. Spin correlations

×10-1

0.0

0.8

1.6

2.4

3.2

-15 -10 -5  0  5  10  15

d. Pairing correlations
×10-1

0.0

0.8

1.6

2.4

 0.0

 0.4

 0.8

 1.2

 1.6

de
ns

ity

U / ta.
4
6
8

10
12

 0.0

 0.8

 1.6

 2.4

 3.2

 4.0

δ 
(×

10
-1

)

U / ta. b.

 0.0

 0.4

 0.8

 1.2

 1.6

0 5 10 15 20

C
10

 (
×1

0-1
)

|r − r0|

U / ta. b.

c.

0 5 10 15 20

 0.0

 2.0

 4.0

 6.0

 8.0

P
11

 (
×1

0-3
)

|r − r0|

U / ta. b.

c. d.

1.2

1.5

1.8

4 8 12
U / t

U / ta. b.

c. d.Mave

4
8

12
16

4 8 12
U / t

U / ta. b.

c. d.Mave χave (×10-2)

0.04
0.08
0.12
0.16
0.20

4 8 12
U / t

U / ta. b.

c. d.Mave χave (×10-2)

 D 

Figure 1. Properties of 560 fermions confined by an harmonic trap. U/t = 6 and T/t ≃ 0.32
(left) and evolution of properties as a function of U/t at T/t ≃ 0.5 (right).

The left of Figure 1 is the typical outcome of such a simulation. Panel (A) displays the
density profile. Because of the presence of interaction, this profile shows a plateau when the
density goes through one. This feature represents one of the most direct signatures of the
presence of a Mott insulator phase. The origin of the plateau is easily explained considering
that this phase is incompressible (an infinitesimal variation of the density costs a finite amount



of energy) and, as such, resistant to the density variation that would be naturally caused by
the underlying trap. Panel (B) strengthens this observation by showing a dip in the density
fluctuation in precise correspondence of the same region. Panel (C) and (D) are measures of
magnetic and pairing order, both of which appear to peak in the same, half-filled region.

This last observation is a bit surprising since one would think that pairing correlations
(intimately linked to superfluidity in fermionic systems) should appear away from the insulating
regime. This is an entirely correct observation and points to the fact that a global measure of
order, as that reported on the left of Figure 1, may not be appropriate at high temperature.
The right of Figure 1 shows instead the nearest-neighbor correlation for spin and next-nearest-
neighbor correlation for pairing (panel (C) and (D)). One can see that pairing is enhanced
around the Mott insulator region as expected and in agreement with experiments done on the
cuprate materials for which the Hubbard model is supposed to be qualitatively correct.

The right of Figure 1 reports the dependence on interaction strength of the same properties
reported on the left of Figure 1 (with the modification for panel (C) and (D) detailed in the
previous paragraph). Due to the kind of probes available in optical lattice experiments, it is
of particular importance to determine the optimal interaction strength for the observation of
magnetism and pairing. The right of Figure 1 makes clear that a value of U/t = 8 is optimal for
the observation of anti-ferromagnetic correlations while pairing is, in this respect, more robust
and can be “optimally” observed for any U/t larger than 8.

3. DMFT cluster solver with linear scaling in inverse temperature

Dynamical Mean Field Theory (DMFT) is a powerful approach to study magnetism,
superconductivity, and metal-insulator transitions in strongly correlated systems. It is a kind
of mean-field theory where the fields, in contrast to ordinary static mean-field theory, depend
on (imaginary) time and can describe quantum fluctuations. The DMFT approach finds a
natural practical implementation in a quantum Monte Carlo algorithm due to Hirsch and Fye
that allows the possibility of specifying the time dependence of the fields arbitrarily (albeit on
a discrete grid). This method however scales as the cube of the inverse temperature and the
question naturally arises on whether one can use DQMC, which scales linearly with inverse
temperature, to address the same issues. The answer to this question is positive and in Ref.[7],
we have developed a method of comparable accuracy which exhibits linear scaling in inverse
temperature and which is entirely based on DQMC.
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Figure 2. Comparison of CPU time for DQMC and HFQMC (left) and comparison of
properties computed with DQMC and HFQMC (right). The agreement of the latter and the
better performance makes DQMC an ideal solver for DMFT.



The CPU time required for updating and measuring in the Hirsch-Fye-QMC and DQMC
algorithms versus the number of time slices on a 4 by 4 cluster is shown in the left of Figure 2 for
simulations with identical parameters. In DQMC one needs to “supplement” the cluster with
additional sites where fermions can hop without interacting. The answer will of course depend
on the number of supplementary sites (Nα) used although we have shown that an average of
two supplementary sites per site of the original cluster is enough to obtain a converged answer.

The left of Figure 2 shows a clear improvement in performance: the scaling goes from cubic
to linear and the prefactor is such that DQMC is always advantageous with respect to HFQMC
even for the highest temperature. As an example of the comparable accuracy of the technique
we also report a set of quantities computed in the right of Figure 2. As one can see there is no
appreciable difference and both techniques outperform the canonical DQMC (without the bath
of external fields) as far as the average sign is concerned. This last aspect has been crucial for
the success of DMFT and it is a highly desirable result that this property is preserved by the
DQMC solver.

4. Numerical solution of the Parquet equations

QUEST has also been used to test the accuracy of the Parquet approximation (PA). The PA is
a conserving diagrammatic approach which is self-consistent at the one and two particle level.
Given the exact, fully irreducible, interaction vertex the PA specifies a set of non-linear equation
that suffices to determine the thermodynamic and transport property of the system. In Ref.[9],
we have solved the PA approximating the fully irreducible vertex with the bare interaction
and we used QUEST to check how the PA and other diagrammatic approaches compare for
properties of a 4 × 4 Hubbard cluster where DQMC gives an essentially exact answer. We
found that, already at this level, the PA performs significantly better than other diagrammatic
approaches (see Figure 3). Since the PA becomes exact when the vertex is exact, we plan to
further improve this approximation by using DQMC and QUEST as a way of obtaining a more
accurate approximation for the fully irreducible vertex.
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Figure 3. Comparison of the Green’s function at k = (0, π) with different diagrammatic
approximation against the exact DQMC result.

5. Robust and stable matrix algorithms

A critical computational kernel of the DQMC is to stably repeatedly compute the Greens
functions Gℓ, which involving a long chain multiplication of matrices Bi and the explicit
inversion. The time-fluctuating matrix entries of Bi incorporate energy scales and the block
and sparsity structures reflect the multiple length scales. For example, an equal-time Greens
function is of the form Gℓ = (I + Bℓ−1Bℓ−2 · · ·B1BLBL−1 · · ·Bℓ)

−1. Based on the previous



Figure 4. Parallel rolling feeder algorithm for computing Green’s functions (left) and speedup
for various L (right).

work of Loh Jr.et al [5, 6], we have conducted a range of synergistic efforts on the development
and analysis of stable and robust linear algebra solvers specifically designed to greatly expand
the length scales of the DQMC simulation in QUEST. For example, in [2], we show that the
computed solution x̂ of the Greens linear system of equations (I + BLBL−1 · · ·B1)x = b is
weakly backward and satisfies a structurally nearby Greens linear system:

[I + (BL + ∆BL)(BL−1 + ∆BL−1) · · · (B1 + ∆B1)] x̂ = b.

where ‖∆Bi‖ = O(ǫM‖Bi‖), ǫM is the machine precision.

6. Parallelization

Parallelization of the DQMC simulation is extremely challenging due to the serial nature
of underlying Markov chain and numerical stability issues. In [4], we developed a hybrid
granularity parallelization (HGP) scheme that combines algorithm and implementation
techniques to explores the parallelism on different levels of DQMC simulation, such as parallel
Markov chain method, task decomposition, communication and computation overlapping,
message compression and load balancing. The left of Figure 4 shows the parallel rolling feeder
algorithm for computing Green’s functions Gℓ for ℓ = 1, 2, . . . , L. Unlike the parallel scan
method, the response time of compute Gℓ by rolling feeder algorithm is independent of L. The
right of Figure 4 shows the speedup for various L with equal-time measurements on an IBM
Blue Gene/P system. As we can see that with 1024 computational processors, the parallel
QUEST obtained a factor of 80 speedup.
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