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Dynamical mean-field theory and its cluster extensions provide a very useful approach for examining phase 
transitions in model Hamiltonians and, in combination with electronic structure theory, constitute powerful 
methods to treat strongly correlated materials. The key advantage to the technique is that, unlike competing 
real-space methods, the sign problem is well controlled in the Hirsch-Fye (HF) quantum Monte Carlo used as 
an exact cluster solver. However, an important computational bottleneck remains; the HF method scales as the 
cube of the inverse temperature, f. This often makes simulations at low temperatures extremely challenging. 
We present here a method based on determinant quantum Monte Carlo which scales linearly in f, with a 
quadratic term that comes in to play for the number of time slices larger than hundred, and demonstrate that the 
sign problem is identical to HF. 
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I. INTRODUCTION 

Quantum Monte Carlo (QMC) methods provide an impor­
tant methodology for solving for the properties of interacting 
Fermi systems. In auxiliary field techniques [1–7], the parti­

tion function, Z=Tr exp[−fĤ ] is expressed as a path inte­
gral, for example, by discretizing the imaginary time f into L 
intervals of length a7 and separating the one body (kinetic) 
and two-body (interaction) terms. The latter are then decou­
pled through the introduction of a Hirsch-Hubbard-
Stratonovich (HHS) field [2] which reduces the problem to a 
quadratic form. The fermion degrees of freedom can be in­
tegrated out analytically, leaving an expression for the parti­
tion function which is a sum over the possible configurations 
of the auxiliary field. For interacting lattice Hamiltonians, 
such as the Hubbard model, this field depends both upon the 
spatial site and on the imaginary time coordinate. The sum 
over configurations is performed stochastically, for example, 
by suggesting local changes and accepting or rejecting with 
the Metropolis algorithm. The problem is challenging nu­
merically because the summand is the determinant of a prod­
uct of matrices, one for each fermion species. The determi­
nant is costly to evaluate, and can also become negative at 
low temperatures, which constitutes the fermion sign prob­
lem [8]. 

There are different ways to represent the matrices. In the 
determinant quantum Monte Carlo (DQMC) approach [1], 
the matrices have dimension equal to the number of spatial 
lattice sites Nc. The matrices are dense, and involve the prod­
uct of L sparse matrices. The algorithm scaling, N3L, arises c 
from the need to update NcL field variables at a cost of N2 

c 
per update, where advantage is taken of an identity for the 
inverse and determinants of Nc-dimensional matrices which 
differ only by a rank-one change. Simulations with this 
method can now be done on many hundreds of spatial sites. 
In situations where particle-hole symmetry prevents a sign 
problem, for example, the half-filled Hubbard Hamiltonian, 

one can reach arbitrarily low temperatures. DQMC simula­
tions have proven the existence of long-range antiferromag­
netic order in the two-dimensional half-filled Hubbard model 
[9], as well as accurately determined the nature of the spec­
tral function and thermodynamic properties at this density 
[10,11]. 

Alternatively, in the algorithm developed by Hirsch and 
Fye (HF) [12] for embedded-cluster problems, a larger 
sparse matrix of dimension NcL is considered. The advantage 
of the HF-QMC approach is that the matrices are better con­
ditioned (no product of L matrices is involved) and also they 
remain positive to much lower temperatures; the sign prob­
lem is far less severe in the HF-QMC method. However, 
because determinants of larger matrices are involved, the 

3L3HF-QMC algorithm scales as N . For this reason, HF-c 
QMC has seen its most powerful applications within dy­
namical mean-field theory (DMFT) [13,14] and its cluster 
extensions, the dynamical cluster approximation (DCA) [15], 
and the cellular dynamical mean-field theory (CDMFT) [16] 
for which Nc is typically small. In effect, DMFT trades the 
large lattice sizes Nc and N3 scaling of DQMC where spatial c 
correlations can be explored, for the ability to reach much 
lower temperatures at general fillings at the cost of less real-
space information, apart from that obtained from the mean 
field. DMFT also can directly access phase transitions which 
can only be inferred from finite-size scaling in DQMC. 

In this paper, we describe a hybrid approach which com­
bines some of the virtues of both DQMC and HF-QMC. The 
key algorithmic improvement is a reduction in the L3 HF­
QMC scaling to linear in L. The importance is that this al­
lows much larger Nc to be considered. At the same time, we 
demonstrate analytically (and confirm numerically) that the 
fermion sign problem in our hybrid algorithm is precisely the 
same as in HF-QMC, provided that the coupling to the host 
is fully taken into account. Thus, as in HF-QMC, we can 
reach low temperatures at quite general fillings. Our paper is 
organized as follows. We first introduce the basic formalism, 
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including a proof that the sign problem is unchanged from 
HF-QMC. We then show results for various physical observ­
ables including the quasiparticle weight, local moment, and 
the Green’s function. We demonstrate that the results of our 
algorithm converge to the same values as that of a well-
developed and tested HF-QMC code. We conclude with a 
comparison of the scaling properties of our approach. 

II. FORMALISM 

DMFT, DCA, and other cluster extensions such as the 
CDMFT all map the lattice problem onto an effective cluster 
embedded in a self-consistently determined effective me­
dium. Here, we will add additional sites to the cluster to 
emulate the effective medium [17,18]. The associated for­
malism will be sketched for the DMFT and DCA, but it is 
easily extendable to include CDMFT. 

The DCA is a cluster mean-field theory which maps the 
original D-dimensional lattice model onto a periodic cluster 
of size Nc =LD embedded in a self-consistent host. This map-c 
ping is accomplished by replacing the Green’s function and 
interaction used to calculate irreducible quantities such as the 
self-energy ( ) by their coarse-grained analogs. Spatial cor­
relations up to a range Lc are treated explicitly, while those at 
longer length scales are described at the mean-field level. For 
details of the DCA formalism and algorithm, please see Ref. 
[19]. 

The DCA loop converges when the cluster Green’s func­
¯tion equals the coarse-grained Green’s function, Gc =G, 

Nc 1 
Ḡ (K,i n) =  i n −  k̃+K −  (K,i n)Nt k̃

1 
=	 , (1)

i n −  ̄K −  (K,i n) − f(K,i n) 

where K labels a cluster wave number,  n is the Matsubara 

frequency, k̃ labels the lattice wave numbers in the Wigner-
Seitz cell surrounding K, and Nt is the total number of lattice 
sites.  ̄K =Nc /Nt k̃ k̃+K is the coarse-grained dispersion and 
f is the single-particle hybridization between the DCA clus­
ter and its effective medium. 

Here, we consider the two-dimensional (2D) single-band 
Hubbard model [20]. In order to employ DQMC as a cluster 
solver, we define an effective cluster Hamiltonian to preserve 
the coarse-grained Green’s function through the addition of 
host band degrees of freedom, which we label with da. 

†	 aH =   ̄(K)cK,acK,a + U ni↑ni↓ +   a(K)daK 
† 
,adK,a 

K,a i K,a,a

a a+	  VKcK 
† 

,adK,a + H.c. (2) 
K,a,a 

The host band label, a, runs from 1 to Na.  
a(K) is the 

dispersion for the da band, VK
a is the coupling of the da band 

to the c band, U is the strength of the interaction and nia 
†=ciacia is the number of spin-a electrons on site i. Upon 

integration of the d band degrees of freedom, the correlated 
band Green’s function becomes 

Geff(K,i n) =	 , (3)
i n −  ̄(K) −  (K,i n) − f'(K,i n) 

where 

Na  VK 
a  2 

f'(K,i n) =  . (4) 
a=1 i n −  

a(K) 

The parameters VK
a and  a(K) are adjusted to fit the DCA or 

DMFT hybridization function f'(K , i n)=f(K , i n). For 
this, we use Marquardt’s method [21] to minimize the fol­
lowing merit function at each momentum point: 

x2(K) =   f(K,i n) − f'(K,i n) 2 . (5) 
n

We define the scaled deviation as 

x(K)
7(K) = ,	 (6)

g(K) 

where g is the standard deviation of data. 
The discretization of the bath degrees of freedom has 

been considered in DMFT where exact diagonalization (ED) 
is used as the Hamiltonian-based impurity solver [17]. Ex­
tensions of this method to dynamical cluster mean-field theo­
ries have also been largely implemented to study variety of 
models such as the extended Hubbard or multiband models 
[22–24]. The advantage of this method is that since ED is 
essentially exact, there is no systematic error beyond the dis­
cretization of the bath. Moreover, more complicated interac­
tions than just the onsite Coulomb can be easily included in 
the Hamiltonian. However, the disadvantage of ED is that the 
Hilbert space grows exponentially with the total size of the 
system, Nc(1+Na). This greatly limits the size of the clusters 
that can be studied. This is specially true since (as we discuss 
below) smaller clusters generally require a higher number of 
noninteracting bands to fully account for the coupling to the 
bath, and for larger clusters, e.g., the 16-site cluster, even a 
very small Na(=2) will make ED inapplicable. 

III. QMC ALGORITHMS AND THE SIGN PROBLEM 

The average sign in the DQMC method is equivalent to 
the average sign in the HF-QMC method in the limit of 
infinite number of bath bands, Na→o. To prove this, we use 
the path-integral formalism and write the partition function 
as 

−S(y,y*)Z = f D[y]D[y*]e , (7) 

where D[..] denotes the functional integral, S is the action, 
and y and y* are Grassmann variable vectors. Equation (7) 
can be approximated by 

yZ =  f D[y]D[y*]e−S0(y,y*)e−SI( c,yc
*), (8) 

si,l = 1 

where S(0)I is the (non)interacting part of the action and y
and y* represent the c-band components. In Eq. (8), we have c
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used HHS transformation to decouple the correlation in the 
interacting part of the action, 

*SI(yc,y
*
c) = −  Ayci,l,aasi,lyci,l−1,a. (9) 

i,l,a 

ea7U/2Here, cosh(A)= , si,l is the auxiliary field and l is the 
time index so that 7l = la7= lf /L. The noninteracting part of 
the action has the following form: 

* ym,l,a − ym,l−1,aS0(y,y *) = a7 [ym,l,a( ) 
]
a7m,l,a 

* + H0(ym,l,a,ym,l,a) , (10) 

where H0 is the noninteracting part of the Hamiltonian and m 
denotes both the spacial coordinate and the band index (in­
cluding the c band). Equation (8) becomes exact in the limit 
of a7→0. By integrating out all the Grassmann variables in 
Eq. (8), one obtains the following expression: 

−1] ,Z e Tr{si,ll 
det[G↑ (11)−1]det[G↓ 

where Ga is the Green’s function of size NL with N=Nc 
+NcNa. 

In the DQMC algorithm, Ia det[G−1] is used as the sam­a 
pling weight to complete the sum over the auxiliary field. 
Note that the action is off-diagonal in time, except for the 
first term of the noninteracting action which is equal to one 
along the diagonal [see Eq. (10)]. Therefore, G−1 is an off-a 
diagonal sparse matrix with identity matrices along the diag­
onal and its determinant can be evaluated from a smaller 
matrix of size N, using the following identity: 

det[G−1] = det[I + Ba,LBa,L−1 ¯ Ba,2Ba,1] , (12)a 

where Ba,l is the corresponding off-diagonal submatrix of 
G−1 at time slice l. The DQMC Markov process proceeds by a 
proposing changes in the HHS fields which are local in space 
time, si,l →−si,l. Because of that, the ratio of the fermion 
determinants can be calculated directly from just the diago­
nal entry of the Green’s function. Similarly, the update of the 
Green’s function following an accepted move does not re­
quire a full O(N3) matrix inversion but can be done in O(N2) 
operations. More details about this algorithm can be found in 
Ref. [1]. 

Now suppose that instead of integrating out all the Grass­
mann variables in Eq. (8), we integrate out only the ones 
associated with the noninteracting electron bands. The parti­
tion function can then be written as 

f D[y *]e−Sc(yc,yc 
*)Z e ]D[y , (13)c c 

si,l = 1 

where 

*Sc(yc,y
*
c) = yci,l,aG−1(i,l; j,l')ycj,l' ,a + SI(yc,y

*
c) . 

i,l,j,l' ,a 

(14) 

In the above equation, G is the noninteracting Green’s func­
−1 +tion on the cluster (G−1 = Geff ) whose Fourier transform to 

momentum and frequency space can be written as 

G(K,i ) = [i − ̄  K − f'(K,i )]−1 . (15)n n n

In the limit of an infinite number of noninteracting host 
bands, Na→o, the self-consistent DCA hybridization func­
tion may be exactly represented by the analytic form of Eq. 
(4), f'(K , i )=f(K , i ). Therefore, G will be equal to the 

¯ −1 + 
n n

DCA cluster-excluded Green’s function, (G )−1. By in­
tegrating out the rest of Grassmann variables in Eq. (13), the 
partition function reads 

−1] ,Z e Tr{si,ll 
det[G−1]det[G (16)c↑ c↓ 

where Gc is the DCA cluster Green’s function of size NcL. 
In HF-QMC, to complete the sum over the auxiliary field, 

I det G−1 is used as the sampling weight. Unlike DQMC, a ca 
where the inverse Green’s function is sparse, here G−1 is a c 
dense matrix with a dimension that grows with the number 
of time slices. The HF-QMC Markov process proceeds by 
proposing local changes in the HHS fields, si,l →−si,l. The 
cost to propose a change, i.e., to calculate the ratio of deter­
minants [Eq. (16)], is low and does not depend upon L or Nc. 
If a change is accepted, then the cluster Green’s-function 
matrix Gc must be updated. It is possible to write this step as 
a rank-one matrix update. However, since the inverse 
Green’s-function matrix is dense, it is not possible to decom­
pose it into Nc XNc blocks similar to what was done above 
with DQMC. 

By comparing Eqs. (11) and (16), one can write the fol­
lowing equation for a particular field configuration: 

−1] .C det[G−1]det[G−1] = det[G↑ 
−1]det[G↓ (17)c↑ c↓ 

Since C is independent of fields, the ratio of sampling 
weights will be the same and therefore, the measured quan­
tities, including the average sign, will have the same statis­
tics in DQMC and HF-QMC algorithms. 

IV. RESULTS 

We apply this method to the 2D Hubbard model [Eq. (3)] 
on a square lattice with nearest-neighbor hopping, t, and 
show results for a7t=1 /4 and the interaction equal to three 
quarters of the bandwidth (U=6t) at filling, (n)=0.86, 
throughout this paper; calculations at different doping re­
gions and for interaction strength equal to the bandwidth lead 
to the same trends for the quantities discussed in this work 
[25]. The quality of the fit of the effective cluster hybridiza­
tion function [Eq. (4)] to the DCA or DMFT hybridization 
function, f, is improved by increasing the number of nonin­
teracting bath bands. In Fig. 1(a), we show the imaginary 
part of f(i ) and the corresponding data for f'(i ) fromn n
the fitting algorithm using different values of Na for a single 
impurity problem (DMFT). The improved quality of the fit at 
a low temperature (T=0.12t) can be seen as Na increases 
from 1 to 3. We find that for a finite Na, the quality of the fit 
always decreases as the temperature is lowered. This can be 
seen in Fig. 1(b) where we show the scaled deviation of the 
fit [Eq. (6)] for different values of Na as a function of tem­
perature. The hybridization function is poorly fit for Na=1  

056703-3 



 

0.2 

0.6 
  

 
 

   
    

 
 

 

  
 

  

 
 
 

  
 

  
  

 
 

   

   

 
 

 
 

     

  

 
 

     

 
 

 
     

 

  

  

  

 

  

   
 

   

  
_ 

     
           

  
  
  
  

   
   

  
   
  
 
  

  
  

 
 

   
   
  
 
 
 
     

  
  

 
 

   
  
  
  
  
      

 
 
 
 
    
  
  

  
 
 

  
 
 

    
 
 
 

µ 2

a) 

N 
c 
=1 

U=6t 

<n>=0.86 

  
   

   
           

 
 
 
 
 
 
 
 
  

       
  

  
   
   
 

   
   

            
 
 
     

 
   

   
 
 

        
  
  
 
 
 
 
 
 
 
 
  
   

 
  

  
  

  
  
   

b) 

0.8 

Z
 0 (0

,0
)

0.4 

0.75 

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
T/t T/t 

HF-QMC   

DQMC, Nα=1
  
  
 
 

DQMC, Nα=2   

DQMC, Nα=3   

HF-QMC, ∆τ→0   

                                                                                                                                                                          

0  10  20  30  40  
βt 

G
(τ

) 

c) 

  
  

 
  
  
      

 

   

 
  
     

 
 

 
  

  
       

   

 
 

  
  
     

  

 
  

  
  

    
  
  
           

  
 

 
 

T=0.07t 
d) 1 

0.2 

0.1

<
sg

n>

0.5 

0 0 
0 0.25 0.5 0.75 1 

τ/β 

 

    
                     

 

                  
    

                  
 
         

 
                       

b) 

0 0.1 0.2 0.3 0.4 0.5

  

     

 
  

       

 
  
      
         
            

    
 
 
 
    

 

 

    T=0.07t
0.8         

 .2 
  

0 0.25 0.5 0.75 1 
τ/β 

      
      

     

      
   

   
   

      
    

     

d) 
c) 

 ) 0
0.6 τ,

.1 

0.2

0 

HF-QMC  

DQMC, N =2α  

DQMC, N =3α
 
 
 
 

                

  

        1 

G
(0

0.4 

0 
0  10 2 0 3 0

βt 

                                         

0

 

<
sg

n>

0.6

   0.8

      
0.4 

 
 

      

    
  

 
   

 
   
  
 
    
       
  

  
 

   
 
   
 
 
  
    
  

  
  

  
   

 
   
  
 
   
       
  

a) 

π,
0)

 

N =2 2

(

×2 

 c µ  0
Z U=6t 

0.75
0.2 <n>=0.86 

0 0.1 0.2 0.3 0.4 0.5 
T/t T/t 

 
-2 

-1 

0 

1 

2 
0.6 

0.4 

-10 0 10 
ω 

n
/t 

n )/
t 

Γ 
Γ’,Nα=1 
Γ’,Nα=2 
Γ’,Nα=3 

U=6t 
N 
c 
=1a) 

<n>=0.86 
T=0.12t 

0.2 

0 0.1 0.2 0.3 0.4 0.5
T/t 

η 

Nα=1 
Nα=2 
Nα=3 

b) 

Im
 Γ

(i
ω

 

0 

KHATAMI et al. PHYSICAL REVIEW E 81, 056703 (2010) 

FIG. 1. (Color online) (a) The imaginary part of the DMFT 
hybridization function and fits to its analytic form of the effective 
cluster problem [Eq. (4)] for Na=1,2,  and  3  versus Matsubara fre­
quency. (b) The corresponding scaled deviations of the fits [Eq. (6)] 
versus temperature.

even at high temperatures. However, the scaled deviation is 
strongly reduced when Na increases. 

As the number of bath degrees of freedom increases, 
DQMC recovers the HF-QMC results for a single-site prob­
lem. We find that a maximum of four bath bands are suffi­
cient for the agreement of the two methods at temperatures 
as low as T=0.07t. This convergence is shown in Fig. 2 for 
Nas3 where we plot the Matsubara frequency quasiparticle 

(K , i1T) /1T]−1),weight (Z0(K)= [1−Im  local moment 
2(} = ((na−n−a)2)) and the Green’s function, calculated using 

HF-QMC and DQMC solvers. To have an idea about the 
absolute errors, we have also included results from an exact 
solution, i.e., HF-QMC with a very small a7 (=1 /16t). We  
point out that the average fermion sign, shown in Fig. 2(c), is  
equal to one, regardless of the bath in the single-site limit. 

The DQMC is a well-behaved cluster solver for the DCA 
as the number of bath bands needed to recover the HF-QMC 

FIG. 3. (Color online) Same as Fig. 2 for a 2  X2 cluster in the 
DCA. In (a) and (d), we plot the quasiparticle fraction at K 
= (1 ,0) and the Green’s function at the origin, respectively. Results 
for Na = 1 cannot be obtained due to a bad sign even at relatively 
high temperatures. 

results decreases with increasing cluster size. This can be 
understood from the suppression of the coupling between 
cluster and host degrees of freedom. In fact, it was shown 
previously that the hybridization function in the DCA is of 
order O(1 / N2/D), where D is the dimensionality [26]. To  c 
illustrate that, we plot in Fig. 3 the same quantities of Fig. 2 
using the same model parameters but now calculated on a 
2X2 cluster. For this cluster, the DQMC results show very 
good agreement with those of HF-QMC up to ft=34 when 
Na =3. As proven in the previous section, the average sign in 
DQMC converges to its HF-QMC value by increasing Na 
[see Fig. 3(c)]. We find that the sign shows a strong sensi­
tivity to the quality of the hybridization function fit. Thus, 
when Nc >1, results for Na =1 cannot be obtained due to a 
bad sign problem, even at relatively high temperatures. In 
Figs. 3(a) and 3(d), we show the quasiparticle fraction at K 
= (1 ,0) and the Green’s function at the origin in real space, 
respectively. 

The DQMC cluster solver is best suited for larger cluster 
 

simulations where Na =2 is sufficient to recover the HF­
QMC results. As an example, we present results for a 4 X4 
cluster in Fig. 4. We find excellent agreement between HF­
QMC and DQMC calculations when Na =2. Here, the aver­
age sign falls more rapidly by decreasing temperature than 
that of the 2 X2 cluster [see Fig. 4(c)]. This limits the calcu­
lations for this cluster to fts15 in the optimally doped re­
gion. However, as can be seen in Fig. 4(c), the average sign 
is significantly improved from a finite-size DQMC calcula­
tion. 

As in HF-QMC, analytic continuation can be performed 
to calculate real-frequency quantities when DQMC is used as 
the cluster solver. As an example, we have considered the 

FIG. 2. (Color online) The convergence of DQMC to HF-QMC 
by increasing Na for a single impurity problem (DMFT). We plot 
(a) the Matsubara frequency quasiparticle fraction versus tempera­
ture, (b) the unscreened moment versus temperature, (c) the average 
sign versus inverse temperature, and (d) the Green’s function at a 

case of Fig. 4 and calculated the single-particle density of low temperature versus imaginary time, calculated using HF-QMC 
and DQMC as impurity solvers. For comparison to exact results, a states (DOS) using the maximum entropy method [27]. The 
HF-QMC solution with very small a7 is also presented. For results indicate that discretizing the bath degrees of freedom 
DQMC, we show results for Na =1 , 2, and 3. For a single-site does not have a significant influence on the spectra. A com­
problem, the average sign is exactly one in all cases. The statistical parison between HF-QMC and DQMC DOS has been pre-
error bars are smaller than the symbols and are not shown. sented in Fig. 5 where we find that there is a very good 
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FIG. 4. (Color online) Same as Fig. 3 for a 4 X4 cluster. For this FIG. 5. (Color online) Density of states for the case study of 
cluster, the convergence of DQMC to HF-QMC is achieved with Fig. 4. The solid (dashed) line shows the results for HF-QMC
 
Na=2.  In  (c), we also show the average sign for a finite-size (FS) (DQMC with Na=2).
 
DQMC calculation on this cluster using the same model parameters.
 

agreement between the two density of states in the low en­
ergy region. However, there is a slight difference in the high-
energy region which would presumably vanish by increasing 
Na. 

V. SCALING 

As discussed in previous sections, the linear scaling of the 
DQMC algorithm with the number of time slices is the main 
advantage of this cluster solver over HF-QMC. The updating 
process in HF-QMC, which is the most expensive step in this 

3algorithm, scales like (NcL) . This is a results of O(NcL) 
changes in the field variable during each sweep and O(N2L2)c 
operations to update the Green’s function for each change 
using a rank-one updating mechanism. A similar argument 
applies to the scaling in the DQMC, except that it costs 
O((Nc + NcNa)2) to update the inverse Green’s function after 
each change in the field variable. Since the number of HHS 
fields and therefore, the number of such updates is propor­
tional to L, the overall scaling of updates in DQMC is linear 
in L. The scaling in the system size remains cubic as in other 
QMC methods and is a big advantage over ED which scales 
exponentially in the size. To show the linear behavior in L, 
we plot the CPU time for updates versus L on the 4 X4 
cluster in Fig. 6(a). First, we compare this to that of HF­
QMC for the same model parameters and by setting ft 
=2.5. At this fixed f, the product of matrices in DQMC is 
stable, which results in a perfectly linear scaling. We find 
that the updating step in DQMC is up to three orders of 
magnitude faster than in HF-QMC for a large number of time 
slices (L �200). 

In more realistic simulations, increasing L is a conse­
quence of increasing f to access low temperatures for a fixed 
order of systematic error (constant a7) [28,29]. In this case, 
we do not expect to see any change in the scaling of HF­
QMC. However, in DQMC, an orthogonalization step which 
scales as L2 , has to be performed to avoid the round-off 
errors. To show how the DQMC scaling changes, we also 
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algorithms versus the number of time slices on a 4 X4 cluster. All 
other quantities are kept constant. The lines show power-law fits of 
the data. The diamond symbols show the CPU time in DQMC with 
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performed to stabilize the matrix multiplications. 
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plot in Fig. 6(a), the CPU time for DQMC with a7t=1 /16. 
We see that the orthogonalization step introduces a quadratic 
term in L with a coefficient which is two orders of magnitude 
smaller than the coefficient of the linear term [see diamond 
symbols in Fig. 6(a)]. This effect on the performance of the 
algorithm becomes slowly significant only when L 2100. We 
point out that measuring the Green’s function in DQMC in­
volves matrix multiplications of the same type as in the up­
dating process, and therefore results in the scaling of the 
CPU time that is very similar to the one for the updates. 
However, as can be inferred from Fig. 6(b), measurements 
generally take more time than updates and the quadratic term 
appears even in the case of constant f. The time for measur­
ing the Green’s function in HF-QMC has more or less the 
same scaling as in DQMC but is roughly an order of magni­
tude larger when L�200. 

VI. DISCUSSION 

In this paper we have shown that the use of DQMC as a 
cluster solver provides several order of magnitude speedup 
over the HF-QMC algorithm, with a sign problem which is 
well behaved (identical to HF-QMC). This improvement 
arises from a fundamental reduction in the scaling of the 
algorithm, from cubic in the inverse temperature, f, to linear 
in f (with a small quadratic term arising from matrix or­
thogonalization to reduce round-off errors). 

However, the HF-QMC approach itself has already been 
supplanted in many applications by “continuous time” QMC 
(CTQMC) algorithms [30–35]. We conclude this paper by 
addressing the relative strengths of the CTQMC technique 
and the new method presented here. CTQMC eliminates the 
systematic error inherent in HF-QMC and DQMC, including 
the method presented here, by stochastically sampling the 
reducible Feynman graphs of the partition function. Al­
though the matrix sizes are generally smaller than in HF­
QMC, the CTQMC algorithm also scales like the cube of the 
inverse temperature f [31]. So, DQMC is generally much 
faster than CTQMC when applied to finite sized systems [32] 
and also for the embedded-cluster problems presented here, 
especially at low temperatures. However, DQMC has the dis­

advantage of the introduction of systematic error. These sys­
tematic errors in HF-QMC and DQMC may be eliminated by 
extrapolating the measured quantities in the time step 
squared, a72 →0 [36]. Since the values of a7 that are used in 
this extrapolation are not overly small, the linear in f nature 
of the present algorithm makes for far more efficient calcu­
lations, especially at lower temperatures. 

VII. CONCLUSIONS 

We have developed a DQMC cluster solver for the 
DMFT, DCA, or CDMFT which scales linearly in the inverse 
temperature but has the same minus sign problem as HF­
QMC. Formally, this is accomplished by defining an effec­
tive Hamiltonian for the embedded-cluster problem which 
includes noninteracting bands for the host. The additional 
Hamiltonian parameters associated with the bath bands are 
adjusted to fit the cluster-host hybridization function. We 
prove that when this fit becomes accurate, this DQMC algo­
rithm recovers the same average sign as HF-QMC. Using 
DCA simulations of the two-dimensional single-band Hub-
bard model, we demonstrate that as the number of bath bands 
increases, we recover the HF-QMC results, including the av­
erage sign. The required number of bands is small, increases 
slightly with lowering temperature, and decreases with in­
creasing cluster size. 
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