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We investigate the two-dimensional Hubbard model with next-nearest-neighbor hopping, t', using the dy
namical cluster approximation. We confirm the existence of a first-order phase-separation transition terminating 
at a second-order critical point at filling nc(t') and temperature Tps(t'). We find that as t' approaches zero, 
Tps(t') vanishes and nc(t') approaches the filling associated with the quantum critical point separating the 
Fermi liquid from the pseudogap phase. We propose that the quantum critical point under the superconducting 
dome is the zero-temperature limit of the line of second-order critical points. 
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I. INTRODUCTION 

Strongly correlated electronic materials, which include 
high-temperature superconductors, heavy fermions, and 
magnetic compounds, are characterized by competing phases 
and complicated phase diagrams. These competing phases 
can lead to quantum criticality when one of the transition 
temperatures is driven to absolute zero as a function of a 
nonthermal control parameter such as pressure or doping.1,2 

While the physics of a conventional phase transition is 
driven by thermal fluctuations, near a quantum critical point 
(QCP), quantum fluctuations affect the properties of a mate
rial up to surprisingly high temperatures.3 In particular, trans
port measurements of hole-doped cuprates suggest the pres
ence of a QCP (Refs. 4 and 5) lying beneath the 
superconducting (SC) dome.6,7 Although it is believed that 
this QCP dominates the phase diagram, its nature is still 
unknown8 with competing scenarios emphasizing the role of 
bosonic or fermionic fluctuations.4 

In this work, we provide evidence for the nature of the 
QCP in the Hubbard model of the cuprates by a systematic 
study of its phase diagram. Our results suggest that the QCP 
is not due to order in the pseudogap (PG) region, but rather is 
the zero-temperature limit of a line of second-order critical 
points associated with a first-order phase-separation transi
tion (see Fig. 1). The control parameter for this transition is 
the next-near-neighbor hopping parameter, t'. 

Although it is possible to have a QCP not associated with 
any obvious order parameter, as in the case of a localization 
transition, in most QCPs a continuous order parameter van
ishes at T=0 for a particular value of the controlling energy 
scale.9 Less common is a QCP associated with a first-order 
transition, but this is possible when the first-order transition 
terminates at a second-order critical point which is driven to 
zero by tuning the relevant parameter. For example, in 
Sr3Ru2O7, 10 as a function of the field angle, a first-order 
metamagnetic transition is driven to T=0 yielding quantum 
critical phenomena. 

The latter case is consistent with the scenario of Fig. 1, 
where the role of the field angle is played by t'. For positive 
t' and below a certain temperature, the system undergoes a 

first-order phase-separation transition. In this region, two so
lutions with different densities coexist for a given chemical 

11,12potential, ). More recently, this first-order metal-
insulator transition was studied by Gull et al.13 and used to 
map out the phase diagram of this model in the space of 
interaction strength and t'. Since these two phases have the 
same symmetry, this transition terminated in a second-order 
critical point at temperature Tps and critical filling nc where 
the charge susceptibility diverges. By increasing t', Tps in
creases and the critical point becomes numerically acces
sible. For low t', it is no longer accessible, but its presence is 
evidenced by a peak in the charge susceptibility. 

Our starting point is the two-dimensional (2D) Hubbard 
Hamiltonian 

0 †H = 2 EkckLckL + U2 ni↑ni↓, (1) 
kL i 

where Ek 
0 =−2t(cos kx + cos ky)−4t'(cos kx cos ky −1) is the 

tight-binding dispersion as a function of the hopping t be
tween nearest neighbors and t' between next-nearest neigh-

T
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T* 
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FIG. 1. (Color online) Schematic phase diagram of the 2D Hub-
bard model in the temperature (T), chemical potential ()), and next
near-neighbor hopping (t') space. For t'>0 the first-order phase-
separation transition terminates at a second-order critical point at 
doping nc and temperature Tps. The line of second-order critical 
points (Tps ,nc) approaches the QCP on the t'=0 plane. This is the 
critical point separating the pseudogap (PG) from the Fermi-liquid 
(FL) region. 
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(ckL) is the creation (annihilation) operator for elec
†trons of wave vector k and spin L, niL =ciLciL, and U is the 

on-site Coulomb repulsion. 

II. METHODOLOGY 

We solve the Hubbard model within the dynamical cluster 
approximation (DCA) (Ref. 14) on a Nc-site cluster. The 
DCA is a cluster mean-field theory which maps the original 
lattice model onto a periodic cluster of size Nc =L2 embeddedc 
in a self-consistent host. Spatial correlations up to a range Lc 
are treated explicitly while those at longer length scales are 
described at the mean-field level. However the correlations 
in time, essential for quantum criticality, are treated explic
itly for all cluster sizes. To solve the cluster problem, we use 
weak-coupling expansion continuous time quantum Monte 
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Carlo (QMC) method15,16 with highly optimized blocked and 
delayed updates,17 a determinant QMC method which scales 
linearly in the inverse temperature,18 as well as Hirsch-Fye 
QMC.19,20 The fast determinant QMC was used to obtain a 
converged DCA solution, Hirsch-Fye QMC was used to cal
culate lattice susceptibilities, and continuous time QMC was 
used as a control for systematic error. The unit of energy is t 
in the entire paper. 

To make contact with previous results, we perform simu-
lations with U=6, but we find that the phase separation be
comes more prevalent for U=8 for which we present most of 
our results. We calculate the filling, n, versus ) and the com
pressibility, dn /d), by taking the numerical derivative. We 
also calculate various susceptibilities including the charge 
Xc(Q=0,T), spin and pairing susceptibilities by solving the 
lattice Bethe Salpeter equation using the renormalized DCA 
vertices.20 Note that as a consequence of the fluctuation-
dissipation theorem, Xc(Q=0,T) is identical to dn /d), but 
we keep both terms, compressibility and susceptibility, to 
identify the method by which they are calculated. 

III. RESULTS 

In Fig. 2(a), we plot n versus ) for U=6,  T=0.077 and 
different values of t', ranging from 0.0 to 0.4, on a 16-site 
cluster. The filling increases monotonically with the chemical 
potential and shows a pronounced flat region, associated with 
the Mott gap, especially for t'<0.4. The most interesting 
feature of n()) is an inflection apparent at finite doping, 
which becomes more pronounced for larger values of t'. The 
inflection in n()) translates into a peak in the compressibility 
(shown on the right axis). The peak becomes sharper and 
moves closer to half filling as t' increases. For t'> 0.3, the 
peak disappears, as does the plateau in n()) near half filling, 
associated with the gap. The value of the critical filling at the 
peak, nc, versus t' is plotted in the inset. Note that for t' 
=0,  nc = 0.86 agrees with the filling 0.85 of the QCP identi
fied previously for these parameters21,22 and a critical filling 
separating two Fermi-liquid (FL) regions in a closely related 
t-J model.23 These results suggest that the QCP may be as
sociated with charge fluctuations. 

To explore this association, we study the behavior of the 
bulk charge susceptibility, Xc(Q=0,T) and its divergence as 

(b) µ 

FIG. 2. (Color online) Filling, n (solid lines), and compressibil
ity, dn /d) (dashed lines), plotted vs chemical potential, ), for vari
ous values of t' for (a) U=6,  Nc =16, and T= 0.077, and (b) U=8,  
Nc =8 at different temperatures. The unit of energy is t in all figures. 
The critical filling, where the compressibility peaks, is plotted in the 
corresponding inset. In (a) when t'→ 0 the peak in the charge sus
ceptibility is located at the QCP identified previously (Ref. 21). 

t'→0. Unfortunately, for this cluster and parameters, the mi
nus sign problem24 limits our ability to access temperatures 
low enough to see a divergence in the charge susceptibility. 
The minus sign problem becomes worse when the cluster 
size, U or It'I increases or the temperature decreases. How
ever, the cluster size, interaction U and t' affect the phase 
diagram in different ways. In previous studies,11 we found 
that for t'=0.3, clusters with Nc = 8, 12, and 16 have roughly 
the same phase-separation transition temperature when U 
= 8. Here, using the same interaction strength, we find that 
the cluster size effects are stronger for smaller values of t' . 
As the cluster size is decreased, the charge susceptibility is 
somewhat suppressed, and more significantly, the critical 
doping moves toward half filling. With increasing U in the 
range from U=4 to 8, the peak in the charge susceptibility 
moves to lower fillings and higher temperatures. So, despite 
the worse minus sign problem associated with larger values 
of the interaction, the region of divergent charge fluctuations 
becomes larger and more accessible for U=8. For this rea
son, from this point on we will use a smaller cluster with 
Nc =8 and U=8, in order to access the second-order critical 
points and investigate their relationship to superconductivity. 

201101-2 
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FIG. 3. (Color online) Inverse bulk charge susceptibility vs tem
perature when U=8,  Nc = 8 for several values of t'. The values of 
the critical filling nc shown in the legend correspond to the maxi
mum of low-temperature compressibility, or the filling where it first 
diverges. 

In Fig. 2(b), we plot n and dn /d) versus ) for several t' 
and temperatures. Similar to Fig. 2(a), we see a cusp emerge 
in the compressibility. As the temperature is lowered, the 
peak in the compressibility is enhanced for t'=0.1 and 0.2. 
However, for a larger t', e.g., t'=0.3, and for T<0.1, we find 
hysteresis between two stable solutions with different values 
of n for the same value of ). 11 The presence of hysteresis 
indicates that the system has undergone a first-order phase-
separation transition. 

We explore the line of second-order critical points of 
these first-order transitions as t' changes using the charge 
susceptibility as shown in Fig. 3. Here, the inverse charge 
susceptibility at nc is plotted versus temperature for different 
values of t' when U=8 and Nc =8. The critical filling iden
tified in the legend is determined as the filling where the 
compressibility either diverges or is peaked at the lowest 
accessible temperatures. We find that the temperature of the 
second-order critical point increases with increasing t' and 
that it moves toward half filling. However, unlike the U=6  
results shown in Fig. 2(a), the critical point appears to avoid 
half filling even for t'=0.4. The stronger Coulomb interac
tion U=8 also strengthens the Mott gap for this t' as can be 
seen in the persistence of the flat region in n()) near n=1 for 
t'=0.4 [Fig. 2(b)]. 

The charge fluctuations associated with phase-separation 
influence the SC phase diagram. This is shown in Fig. 4 for 
Nc =8,  U=8, and t'=0.0, 0.1, and 0.3. The pseudogap tem
perature, T*, obtained as the temperature where the bulk spin 
susceptibility peaks (see Ref. 21), is also plotted. For t'=0,  
T* vanishes at the QCP, which for this smaller cluster has 
moved to nc =0.88. Note that for t'=0, the SC dome is cen
tered on the QCP, suggesting that superconductivity is asso
ciated with the quantum fluctuations. For t'=0.1 and t' 
=0.3, the SC dome contains the point where T* →0, but is 
not centered around nc. Instead, the second-order point is 
found on the low-doping side of the SC dome. Note that the 
maximum SC transition temperature increases slightly with 
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FIG. 4. (Color online) SC transition temperature Tc (solid lines), 
pseudogap temperature T* (dotted lines), and critical points (stars) 
for the 2D Hubbard model with U =8,  Nc =8, and t'= 0, 0.1, and 0.3. 
For all t' the T* line terminates inside the SC dome. For t'=0, this 
termination point coincides with the QCP of the phase-separation 
transition (star in the left panel). For t'=0.1 and 0.3 the second-
order critical point is at critical filling nc =0.93 and 0.97, respec
tively, which is above the SC optimal filling. 

increasing t' which is in agreement with previous results for 
a four-site cluster, and the same interaction strength.25 

IV. DISCUSSION 

A detailed study of the phase diagram of the 2D Hubbard 
model with next-near-neighbor hopping has allowed us to 
identify the nature of the QCP under the SC dome. We argue 
that QCP is the terminal point of a line of second-order criti
cal points associated with first-order phase-separation transi
tions. The critical temperature is driven to zero as t'→0. For 
positive t', a Mott liquid and a Mott gas coexist at fixed ). 11 

In real materials other parameters, such as electron-phonon 
interaction, intersite electron-electron interaction or inhomo
geneities, might play a role similar to t' . 

It is generally accepted that the model describes the 
electron-doped cuprates for t'> 0 and the hole-doped cu
prates for t'<0. We find that the model for t'> 0 does not 
display quantum criticality, but rather classical criticality. 
The QCP is found only for t'=0 and as is known from other 
quantum critical systems, it will strongly affect the system 
for a wide range of parameters and temperatures around this 
point, including t'< 0, the model for the hole-doped cu
prates. 

The relationship of the superconductivity with the QCP at 
t'=0 is not yet clear, but the fact that the dome is centered at 
the QCP suggests that the incipient phase separation creates 
conditions favorable for superconductivity.26 The Mott liquid 
phase may provide regions where the spin-mediated pairing 
interaction is strong and the Mott gas may provide regions 
where there are quasiparticles to pair. It may also be that the 
incipient charge fluctuations when combined with the anti-
ferromagnetic spin fluctuations enhance the pairing within a 
narrow region near the QCP.27 The phase-separated region 
might also be related to the pervasive inhomogeneities ob
served in cuprates which led to theoretical scenarios for an 
inhomogeneity-based pairing mechanism28,29 or an enhance
ment of pairing interactions.30–34 Finally, it has been sug
gested that in the vicinity of the QCP, even a weak retarded 
attractive interaction may become far more effective at in

201101-3 
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ducing pairing.35 The relation between the QCP and super
conductivity will be explored in greater detail in future 
studies. 

V. CONCLUSION 

We find that the QCP at t'=0 of the 2D Hubbard model is 
the zero-temperature limit of a line of second-order critical 
points associated with a first-order phase-separation transi
tion, which occur at finite temperature when t'>0. The fill
ing associated with the second-order critical point is deter
mined from the peak position in the compressibility versus 
chemical potential. The peak grows by decreasing the tem
perature or increasing the cluster size or the interaction 
strength. We also show that for t'>0 and at n=nc, the charge 
susceptibility diverges at a finite temperature which de
creases by decreasing t'. As  t'→0, nc moves continuously 
from values close to half filling to the filling that corresponds 
to the QCP. For t'=0, the SC dome is centered at the QCP 

PHYSICAL REVIEW B 81, 201101(R) (2010) 

where the pseudogap temperature, T*, also vanishes. This 
suggests that the incipient phase separation might play a role 
in the pairing mechanism. However, for t'>0, while T* 

seems to vanish roughly at the center of the dome, phase 
separation happens at temperatures much higher than the SC 
temperature with classical critical points that move to the 
lower-doping side of the dome. 
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