Vortex Chains due to Nonpairwise Interactions and Field-Induced Phase Transitions Between States with Different Broken Symmetry in Superconductors with Competing Order Parameters

Julien Garaud
Egor Babaev, University of Massachusetts - Amherst

Available at: https://works.bepress.com/egor_babaev/46/

Vortex chains due to nonpairwise interactions and field-induced phase transitions between states with different broken symmetry in superconductors with competing order parameters

Julien Garaud¹,∗ and Egor Babaev¹

¹Department of Theoretical Physics, KTH-Royal Institute of Technology, Stockholm, SE-10691 Sweden
(Dated: January 21, 2015)

We study superconductors with two order components and phase separation driven by intercomponent density-density interaction, focusing on the phase where only one condensate has non-zero ground-state density and a competing order parameter exists only in vortex cores. We demonstrate there, that multi-body intervortex interactions can be strongly non-pairwise, leading to some unusual vortex patterns in an external field, such as vortex pairs and vortex chains. We demonstrate that, in external magnetic field, such a system undergoes a field-driven phase transition from (broken) $U(1)$ to (broken) $U(1) \times U(1)$ symmetries, when the subdominant order parameter in the vortex cores acquires global coherence. Observation of these characteristic ordering patterns in surface probes may signal the presence of a subdominant condensate in the vortex core.

PACS numbers: 74.25.Ha, 74.20.Mn, 74.20.Rp

I. INTRODUCTION

The unusual magnetic response that originates in multi-scale inter-vortex interactions recently attracted substantial interest in the framework of multi-component superconductivity. The interest was sparked by the observation of vortex aggregates in the two-band superconductor MgB$_2$ [1–5], multi-band iron pnictides Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ [6, 7] and Ba$_{1-x}$K$_x$Fe$_2$As$_2$ [8], as well as in spin triplet Sr$_2$RuO$_4$ [9, 10]. There, the existence of multiple coherence lengths may lead to multi-scale physics that can account for observation of vortex aggregates. On the other hand, models of multi-component superconductivity featuring bi-quadratic density-density interaction are currently discussed in the context of superconductors with pair density wave order [11, 12], and most recently in the context of interface superconductors such as SrTiO$_3$/LaAlO$_3$ [13]. Here we investigate the properties of topological defects in an immiscible phase of a two component model, where there is strong bi-quadratic interaction that penalizes coexistence of both superconducting condensates. We show that it features unusual multi-scale physics of the vortex matter where non-pairwise interactions are important. This is modelled by a theory of two complex fields, that (1) of the symmetry of the theory.

In two-component superconductors, when both condensates have non-zero ground-state density, non-monotonic interactions can occur, due to competing inter-vortex interactions with different length scales [14–16]. This typically leads to formation of vortex clusters surrounded by macroscopic regions of Meissner state [17]. Because it features properties of both type-1 and type-2 superconductors, this regime is termed type-1.5. It is a subject of ongoing studies, both experimental on MgB$_2$ [1, 2, 4, 5] and more recently in Sr$_2$RuO$_4$ [10] and theoretical studies of Ginzburg-Landau [15, 16, 18], microscopic [19] and effective point-particle models [20, 21].

Here, we show that unusual multi-scale interaction arises in models of two-component superconductors with strong intercomponent bi-quadratic coupling that is repulsive. The bi-quadratic interaction penalizes coexistence of both condensates and above a given critical coupling they cannot coexist, so that one is completely suppressed. However, in the cores of vortices, this interaction is effectively much weaker and the suppressed component can locally condense. We demonstrate that the condensation in vortex cores leads to new unusual multi-scale, non-monotonic interactions between vortex matter, where non-pairwise forces are important (see also remark [22]). Because it originates in multiple condensates with a particular hierarchy of the physical length scales, it is somewhat akin to the type-1.5 regime, but with the substantial difference here that only one condensate has non-zero ground-state density.

Below, we study the two-component Ginzburg-Landau model where intercomponent density-density interaction can be strong enough to completely suppress one of the condensates, in the ground-state. We characterize the different possible ground-state phases of that model and the associated length scales. Finally, we numerically investigate the properties of vortices within the phase above a critical density-density coupling, where both components cannot coexist. There we demonstrate the existence of the above mentioned regime where intervortex interactions are non-monotonic, and where multi-body forces are important. Unlike the type-1.5 regime where vortices typically aggregate into clusters [15, 16, 18], vortices here tend to form chains and irregular structures. Unlike chains forming in multi-scale sys-

∗ garaud.phys@gmail.com
II. THE MODEL

The Ginzburg-Landau model we consider here is a theory two complex fields ψ_1 and ψ_2 standing for two superconducting condensates. They interact together by their coupling to the vector potential of the magnetic field $B = \nabla \times A$, through the kinetic term $D \equiv \nabla + ieA$:

$$\mathcal{F} = \frac{B^2}{2} + \sum_{a=1,2} \left\{ \frac{1}{2} D\psi_a^2 + \alpha_a |\psi_a|^2 + \frac{1}{2} \beta_a |\psi_a|^2 \right\} + \gamma |\psi_1|^2 |\psi_2|^2. \quad (1)$$

Moreover, the condensates are directly coupled together by a bi-quadratic (density-density) interaction potential term when $\gamma \neq 0$ and because the bi-quadratic interaction is repulsive, $\gamma > 0$. For generic values of the parameters of the potential, α, β and γ's, the theory has a $U(1) \times U(1)$ symmetry. [31]

Depending on the relation between the parameters of the potential, two qualitatively different superconducting phases can be identified. These are determined by the ground-state properties of the theory. Since the potential depends on the fields moduli only, the ground-state is the state with constant densities of the superconducting condensates $|\psi_a| = u_a$ and where the vector potential is a pure gauge ($A = \nabla \chi$ for arbitrary χ) that can consistently chosen to be zero. The extrema of the potential, are given by $\partial V/\partial |\psi_a| = 0$ and the ground-state densities u_a satisfy:

$$\left\{ \begin{array}{l}
2 (\alpha_1 + \beta_1 u_1^2 + \gamma u_2^2) u_1 = 0 \\
2 (\alpha_2 + \beta_2 u_2^2 + \gamma u_1^2) u_2 = 0.
\end{array} \right. \quad (2)$$

For the extrema to be stable (minima), the eigenvalues of the Hessian matrix $\mathcal{H} = \partial^2 V/\partial |\psi_a| \partial |\psi_b|$ must be positive. Here the Hessian matrix reads

$$\mathcal{H} = 2 \left(\begin{array}{cc}
\alpha_1 + 3\beta_1 u_1^2 + \gamma u_2^2 & \gamma u_1 u_2 \\
\gamma u_1 u_2 & \alpha_2 + 3\beta_2 u_2^2 + \gamma u_1^2
\end{array} \right). \quad (3)$$

Apart from the normal state ($u_1 = u_2 = 0$), there are two qualitatively different solutions of (2): the A-phase (miscible) for which both condensates have non-zero ground-state density ($u_1, u_2 \neq 0$), and the B-phase (immiscible) for which only one condensate has non-zero ground-state density: either $u_1 \neq 0$ and $u_2 = 0$ or $u_1 = 0$ and $u_2 \neq 0$. Assuming that $\alpha_a < 0$ and $\beta_a > 0$, the qualitatively different stable phases determined by (2) and (3) are

A-phase: $(u_1^2, u_2^2) = \left(\frac{\alpha_1 \gamma - \alpha_1 \beta_2}{\beta_1 \beta_2 - \gamma^2}, \frac{\alpha_1 \gamma - \alpha_2 \beta_1}{\beta_1 \beta_2 - \gamma^2} \right)$ \quad (4)

if $\beta_1 \beta_2 > \gamma^2$, $\alpha_2 \gamma - \alpha_1 \beta_2 > 0$ and $\alpha_1 \gamma - \alpha_2 \beta_1 > 0$.

B-phase: $(u_1^2, u_2^2) = \left(\frac{-\alpha_1}{\beta_1}, 0 \right)$ or $\left(0, \frac{-\alpha_2}{\beta_2} \right)$ \quad (5)

if $\alpha_2 \beta_1 - \alpha_1 \gamma > 0$ or $\alpha_1 \beta_2 - \alpha_2 \gamma > 0$.

Clearly, to understand properties of the B-phase it is enough to consider only the first case where $u_1 \neq 0$ and $u_2 = 0$, as the case $u_2 \neq 0$ and $u_1 = 0$ can straightforwardly be obtained from the first one. Note that we disregard the possibility of having one positive α_a. For both $\alpha_a > 0$, the ground-state is the normal state $u_1 = u_2 = 0$. The ground-state in the A-phase spontaneously breaks the $U(1) \times U(1)$ symmetry. In the B-phase, only one of the $U(1)$'s is spontaneously broken while the other, associated to the suppressed condensate, remains unbroken.

In this work, we are primarily interested in the properties of the B-phase (5), in the vicinity of the phase transition between A- and B- phases. A convenient parametrization to understand this transition is to investigate the role of the bi-quadratic coupling γ. As shown in Fig. 1, for fixed values of α_a and β_a, the bi-quadratic coupling γ can be used to parametrize the transition between the two phases. The length scales
ξ_{\pm} are defined from the eigenvalues m_2^\pm of the Hessian (3) as $\xi_{\pm} = 1/m_{\pm}$, while the penetration depth is $\lambda = 1/\sqrt{u_1^2 + u_2^2}$. Here m_2^\pm stands for the largest eigenvalue of the Hessian and m_2^\pm the smallest. The relation between the Hessian matrix and the length scales can be heuristically understood as follows. The Hessian matrix contains the informations about the stability of the ground-state and thus how it recovers from a small perturbation. It is important to understand that ξ_{\pm} corresponds to hybridized modes and cannot be attributed to a given condensate separately. That is, m_2^\pm are the decay rates of a linear combination of ψ_1 and ψ_2. Long-range intervortex interaction is controlled by the masses of normal modes. The linearized theory yields the following long-range intervortex interaction [16]:

$$V = q_\lambda K_0(r/\lambda) - q_- K_0(r/\xi_-) - q_+ K_0(r/\xi_+), \quad (6)$$

where K_0 is the modified Bessel function of the second kind and the coefficients q_λ and q_{\pm} are determined by nonlinearities. Here the first term describes the repulsion driven by current-current and magnetic interactions, while the second and the third terms describe density-field-driven interactions.

Single component superconductors are classified into type-1/type-2 when the penetration depth λ is smaller/larger than the coherence length ξ. From this, the vortex interactions are attractive in type-1 because long range interaction is mediated by core-core interactions. On the other hand, it is repulsive for type-2, due to current-current interactions that range with λ. In two-component superconductors, such a classification is not directly applicable because of the existence of multiple length scales ξ_{\pm}. In particular, if the penetration depth is an intermediate length scale, $\xi_- < \lambda < \xi_+$, it, under certain conditions, leads to non-monotonic interactions that are long-range attractive and short-range repulsive [14, 16]. This can result in the formation of vortex clusters surrounded by macroscopic regions of Meissner state [17]. This phase is coined type-1.5 and observation of clusters were reported from measurements in clean MgB$_2$ [1, 2] and in Sr$_2$RuO$_4$ [10] samples.

When increasing γ, toward the critical value $\gamma_\star = \alpha_2 \beta_1/\alpha_1$ that separates A- and B- phases, the disparity in densities becomes more important. This is accompanied with the increase of the largest length scale, ξ_+. At γ_\star this length scale diverges, while all the other length scales remain finite. In the A-phase, where both condensates have non-zero ground-state density, elementary topological excitations are vortices with winding in either condensate. These carry a fraction of the flux quantum, but finiteness of the energy imposes that they form a bound state that has phase winding in both condensates and that carries integer flux quantum. The most simple version of such a bound state is to have vortices in both condensates and that they superimpose. However, solutions where vortices do not coincide can exist and be preferred energetically. It has recently been argued that such topological defects, characterized by an additional topological invariant, could be realized in interface superconductors, such as SrTiO$_3$/LaAlO$_3$ [13]. If λ is not the smallest length scale (i.e. not a type-1 regime), then there always exists a regime, in the vicinity of γ_\star, where the penetration depth is an intermediate length scale: $\xi_- < \lambda < \xi_+$. In the A-phase, this length scale hierarchy is known to be a necessary condition for the non-monotonic vortex interaction [15]. Clearly, this is realized close to γ_\star, see Fig. 1.

III. EVIDENCES FOR STRONG NON-PAIRWISE INTER VORTEX FORCES

Here our main interest are the properties of the B-phase, in particular in the vicinity of γ_\star. In contrast to the above mentioned type-1.5 regime of the A-phase, the topological excitations in the B-phase are vortices that have core in ψ_1 only. Away from vortex cores, the fields recover their ground-state values and thus only ψ_1 can contribute to the flux quantization.

To investigate the properties of topological excitations and their interactions, we numerically minimize the free energy (1) within a finite element framework [32]. That is, for a given choice of parameters, a starting configuration with desired winding is created and the energy is then minimized with a non-linear conjugate gradient algorithm. For detailed discussion on the numerical methods, see for example appendix in Ref. 33. In the B-phase only the condensate ψ_1, has non-zero ground-state density and thus only ψ_1 has vortex excitations. Since the component ψ_1 vanishes at the vortex core, it can be beneficial for the suppressed component ψ_2 to assume non-zero density in the cores of vortices. A similar mechanism of condensation in vortex cores was also discussed in the context of cosmic strings [34]. Minimizing the free energy (1) for an initial configuration carrying a single flux quantum relaxes to such a vortex state, see first line in Fig. 2. The condensate ψ_2 that lives inside the vortex cores is gradually suppressed where the other condensate ψ_1 recovers toward its ground-state density. The rate at which ψ_2 recovers is determined by the fundamental length scales ξ_{\pm} of the theory. Because the modes are hybridized, the length scales associated with the recovery of ψ_1 and the decay of ψ_2 are not independent.

In the B-phase, in the vicinity of γ_\star, the length scales satisfy the necessary condition for non-monotonic interactions. Indeed, as shown on the second line of Fig. 2, interactions between two vortices can also be non-monotonic in the B-phase, even if only one condensate has non-zero ground-state density. There, in agreement with the linear theory (6), pairwise interaction between vortices is long range attractive due to the largest hybridized density mode and short range repulsive due to current-current interactions. It results in a preferred distance at which vortices minimize their interaction energy by forming a vortex pair. Based on these observations, natural expectation from the two-body interactions is
Figure 2. (Color online) – Vortex solutions in the B-phase of Fig. 1, for the coupling constant of the bi-quadratic interaction $\gamma = 1.0$. The first column displays the magnetic field, while the second and third columns show $|\psi_1|^2$ and $|\psi_2|^2$, respectively. The lines show configurations carrying $N = 1, 2, 3,$ and 4 flux quanta, respectively. In the B-phase, only ψ_1 has non-zero ground-state density, because the bi-quadratic coupling is too strong to allow coexistence of both condensates. Thus only ψ_1 forms vortices, while ψ_2 is zero everywhere except in vortex cores. As expected from the length scales considerations, intervortex interaction is non-monotonic and vortices stand at a preferred distance, see second line. For a larger number of flux quanta (third and fourth line), vortices form straight chains. This contrasts with the two-body picture that would naively lead to conclude that many vortices would organize in a compact cluster. Because the theory (1) is completely isotropic, the line-like organization can originate only in complicated interactions. This poses the question of the response of the system to an external field. At elevated external field, vortex matter usually forms lattices (hexagonal, square, etc). Since the low field results indicate strong non-pairwise forces, the question arises if these have a substantial influence at elevated fields. To sort this out, we investigate the response in an external field $H = H_z e_z$, perpendicular to the plane. For this, the Gibbs free energy $G = F - B \cdot H$ is minimized, with requiring that $\nabla \times A = H$ on the boundary (see e.g discussion in appendix of Ref. 33). As shown in Fig. 3, the typical response in external field shows a long-living irregular vortex structure. For example, similar simulations, but in the A-phase, show very regular square lattices [36]. We show such a lattice in the Appendix A.

There is a tendency here to form chains, but this tendency competes with the increased importance of current-current interactions in the relatively dense vortex matter. Note that the non-pairwise forces, when strong enough, typically promote metastable or long-living disordered states. Also, when minimizing the Gibbs free energy with the condition that $\nabla \times A = H$ on the boundary, the interaction energy between vortices is minimized not independently from the interaction with the Meissner...
currents on the boundary. Such finite size effects, play as well a role in having imperfect lattices.

Observe that it was demonstrated earlier, that in type-1.5 systems, multibody forces can aid formation of vortex chains for dynamic and entropic reasons [17]. However, here the non-pairwise forces are clearly much stronger, as chains form as ground-state solutions in low fields, see Fig. 2. Note also that the chains and vortex dimers forming here originate in non-pairwise interactions and not because of pairwise interactions with multiple repulsive length scales [26, 27, 37]. They should also not be confused with vortex chains predicted for multilayer structures, where they originate in stray field that lead to long-range repulsive interaction [21, 38].

\[B |\psi_1|^2 |\psi_2|^2 \]

\[U \]

phase transition to a state that breaks the whole system and thus the system thus undergoes a break of symmetry. By saying that the system breaks \(U \) symmetry in an external field we assume a robust vortex structure, we do not consider here vortex liquids. The interconnection of \(\psi_2 \) across the whole sample is signalled by a change in the phase winding pattern. If two condensates have non-zero density, phase winding in only one condensate gives a logarithmically divergent contribution to the energy [39]. As a result, it is energetically beneficial for the component \(\psi_2 \) to form vortices as well. This is in strong contrast with the results for isolated vortices. The breakdown of the \(U(1) \) symmetry associated with the condensate \(\psi_2 \), and the corresponding formation of vortices can be seen from phase difference \(\varphi_{12} = \varphi_2 - \varphi_1 \) shown in the upper right panel in Fig. 3. There, the dipole-like structure of \(\varphi_{12} \) shows the existence of phase winding in both condensates but around different points. This unambiguously signals that both condensates have the same total phase winding and thus \(U(1) \times U(1) \) symmetry-broken state.

\[B |\psi_1|^2 |\psi_2|^2 \]

\[|\psi_1|^2 \]

\[|\psi_2|^2 \]

IV. INDUCING STATE WITH DIFFERENT BROKEN-SYMMETRY BY APPLIED FIELD

For isolated vortices in \(\psi_1 \), the other component \(\psi_2 \) develops non-zero amplitude in the vortex core. However, as shown in Fig. 2, \(\psi_2 \) is asymptotically suppressed and thus it has no phase winding. As mentioned in the introduction, in this state the system breaks only one \(U(1) \) symmetry. In high external field, there is a large density of vortices and on average \(|\psi_2| \) becomes non zero. There, the areas with non-zero \(|\psi_2| \) get interconnected across the whole system and thus the system thus undergoes a phase transition to a state that breaks the \(U(1) \times U(1) \) symmetry. By saying that the system breaks \(U(1) \times U(1) \) symmetry in an external field we assume a robust vortex structure, we do not consider here vortex liquids. The interconnection of \(\psi_2 \) across the whole sample is signalled by a change in the phase winding pattern. If two condensates have non-zero density, phase winding in only one condensate gives a logarithmically divergent contribution to the energy [39]. As a result, it is energetically beneficial for the component \(\psi_2 \) to form vortices as well. This is in strong contrast with the results for isolated vortices. The breakdown of the \(U(1) \) symmetry associated with the condensate \(\psi_2 \), and the corresponding formation of vortices can be seen from phase difference \(\varphi_{12} = \varphi_2 - \varphi_1 \) shown in the upper right panel in Fig. 3. There, the dipole-like structure of \(\varphi_{12} \) shows the existence of phase winding in both condensates but around different points. This unambiguously signals that both condensates have the same total phase winding and thus \(U(1) \times U(1) \) symmetry-broken state.

\[B |\psi_1|^2 |\psi_2|^2 \]

\[|\psi_1|^2 \]

\[|\psi_2|^2 \]

V. METASTABLE MULTI-QUANTA SOLUTIONS

When \(\gamma \) becomes large enough as compared to \(\gamma_s \), condensation of \(\psi_2 \) in the vortex core becomes less important. As a result, deeper in the B-phase, individual vortices show no condensation of \(\psi_2 \) in the core (see also remark [40]). Moreover, deep into the B-phase, \(\lambda \) becomes the largest length scale, and the interaction between vortices becomes long-range repulsive. Since this follows from asymptotic analysis, this holds sufficiently far from the vortex core. However, it does not preclude more involved interactions at shorter ranges. We computed vortex solutions as in Fig. 2, but deeper in the B-phase (\(\gamma = 1.2, 1.4, \ldots \)). There, we find that indeed, isolated vortices are preferred over vortex bound states. Nevertheless, we could find a special kind of metastable bound states of vortices. Namely, we found configuration carrying \(N \) flux quanta whose energy \(E(N) \) is larger than the one of \(N \) isolated vortices: \(E(N) > NE(N = 1) \). These configurations are thus local minima of the energy functional and, for the parameters which we considered, they differ by less than 5 percent from isolated vortices. Such a meta-stable state is shown in Fig. 4. Being obtained through energy minimization, it is stable to small perturbations and depends on the starting configuration. Namely, if the starting configuration is in the attractive basin of the local minimum, it will converge to the local minimum. Typically if the starting configuration consists of dense packing of vortices, then it may lead to the meta-stable bound state. The meta-stable state shown in Fig. 4 are lumps where \(\psi_2 \) is non zero, despite that, from an energetic viewpoint it should be suppressed. There the magnetic flux is screened by \(\psi_1 \) outside the vortex, while \(\psi_2 \) is responsible for screening inside. As a result, the magnetic flux is localized on a cylindrical shell around the vortex and resembles a pipe.
Figure 5. (Color online) – Solution in an external field for the same parameters as in Fig. 3, but stronger bi-quadratic coupling $\gamma = 1.5$. These parameters for the potential set the system deep into the B-phase where the penetration depth is the largest length scale. Thus it should behave as an ordinary type-2 system. In such a regime, preferred solutions are isolated Abrikosov vortices. However, there also exist metastable states as the one shown in Fig. 4. The meta-stable bound state of vortices appears as an inclusion of a domain where ψ_2 condenses. Because these are surrounded by vortices exerting some pressure, in practice they do not decay into ordinary vortices.

According to the asymptotics, intervortex interactions are long range repulsive. The attractive channel is activated only at shorter range. This means that when there are many vortices, relatively close to each other, they may form the bound states similar to the one displayed in Fig. 4, because of the “pressure” of other vortices. Such a situation is likely to occur in external field and it may result in coexistence of single vortices and bound vortices. As shown in Fig. 5, this indeed happens, despite that the parameters are deep into the B-phase. Note that the energy difference and the stability of bound vortices depends on all parameters of the free energy. More precisely, when the difference between α_a is important then the meta-stable solution does not form anymore in our simulations. Thus, the coexistence of bound vortices and usual vortices is not a universal feature and needs both condensates to have parameters with rather similar values.

In our simulation of the model, the creation of the pipe-like meta-stable states was very history dependent. However, if they are created at all, it may be very difficult to destroy them. That is, if isolated, pipe-like vortices are only meta-stable and may be very sensitive to small perturbations that can trigger decay into ordinary vortices. However, when surrounded by vortices, the decay channel may be different. Indeed, because it is type-2, vortices interact repulsively and they exert some pressure on the lump whose decay may thus be more difficult. We show in Fig. 5, that this is indeed the case that in external field, deep into the B-phase, lumps coexist with vortices. Note that because their creation depends on past configurations, slowly ramping up the external field may make these more rare events. Deeper in the B-phase, pipe-like bound states are unstable and as shown in Fig. 6, there, only usual vortices ψ_1 exist and ψ_2 never condenses (up to numerical accuracy).

VI. SUMMARY

In this paper, we have investigated the physical properties of two-component Ginzburg-Landau models, with inequivalent components, where bi-quadratic interactions penalize coexistence of both condensates. Above a critical coupling γ_*, the condensates cannot coexist and only one preferred component can have non-zero ground-state density, thus breaking only one of the $U(1)$ symmetries. We have demonstrated that in a sufficiently strong magnetic field the second component nevertheless appears resulting in a phase transition where the (second) $U(1)$ symmetry is also broken. This kind of phase transition is by no means restricted to systems with $U(1)$ symmetry. It should also exist in other systems where different order parameters are localized at the core of topological defects. Also we shown that under certain conditions such systems may form meta-stable states carrying multiple flux quanta distributed in a cylinder around the vortex,
that resembles a pipe.

Near the critical coupling γ, one of the coherence lengths becomes the largest length scale. On the $U(1) \times U(1)$ side this results in the situation where the system cannot be a type-2 superconductor but be either of type-1 or type-1.5. In the later case one coherence length is larger and another is smaller than the magnetic field’s penetration depth and the system vortices form clusters.

Our main results pertain to the $U(1)$ ground-state, where both condensates are phase separated. There the simple picture from the two-body interactions fails to account for the structure of vortex bound states. Indeed, instead of forming vortex clusters as suggests the two-body picture, vortex chains are formed. Because the theory is fully isotropic, this can be interpreted as the hallmark of strong non-pairwise forces. These also affect the response in external field, where there is a clear tendency to form vortex chains. In a finite sample it results in rather irregular (metastable) vortex patterns with vortex dimers and vortex chains, as shown in Fig. 3. The result should hold for a variety of multicomponent models with competing order parameters. Thus observation of such vortex patterns may serve as an experimental hint for the presence of competing phases condensing in vortex cores. Interestingly the rather disordered vortex patterns are quite similar to those observed experimentally in iron-based superconductors [6, 7, 9]. The richness of static and dynamic phases which can form in systems with strong multi-body forces [35, 46] calls for further investigation of vortex states in these models. In samples with disorder the pattern formation will be affected by pinning which also calls for the investigation of its role. However, one can still expect prevalence of vortex pairs, in the presence of disorder.

ACKNOWLEDGMENTS

We acknowledge discussions with D. F. Agterberg and J. Carlström. The work was supported by the Knut and Alice Wallenberg Foundation through a Royal Swedish Academy of Sciences Fellowship, by the Swedish Research Council grants 642-2013-7837, 325-2009-7664. Part of the work was performed at University of Massachusetts, Amherst and supported by the National Science Foundation under the CAREER Award DMR-0955902. The computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at National Supercomputer Center at Linköping, Sweden.

Appendix A: Vortex matter in the A-phase

In the main body of the paper, we focus on vortex matter in B-phase where the bi-quadratic interactions are strong enough to segregate condensates. For completeness, in this appendix we provide additional materials that show the behavior of vortex matter in the A-phase for the model with these parameters (although it is not directly related to the main topic of the paper).

In the A-phase, both condensates have non-zero ground-state density. Thus, in order to have finite energy solutions both components must wind the same number of times. However, the cores do not necessarily have to overlap. Because of the bi-quadratic interaction, if the penetration depth is large enough, it is beneficial to split cores. As shown in Fig. 7, the cores in ψ_2 do not superimpose with those in ψ_1. Core splitting in single vortices induces a dipolar interaction through the phase difference mode, that is long range. As can be seen in Fig. 7, the long range dipolar interactions are responsible for the binding of vortices. This interaction is responsible for the binding of vortices.
Figure 8. (Color online) – Solution in an external field, for the applied field corresponding to 301 flux quanta going through the sample’s area. The parameters are the same as in Fig. 7 and displayed quantities are the same as in Fig. 3. Vortices in each condensate form square lattices that are translated from each other because of the bi-quadratic interaction. This results in a chequerboard pattern. Because of the disparity on ground-state densities, vortices in ψ_2 carry less flux than vortices in ψ_1. As a result the “brighter spots” of the magnetic field correspond to the vortices in ψ_1. Note that the lattices are not perfect because of finite-size effects due to the interaction with Meissner currents and vortex entries at the boundaries.

[22] Because the Ginzburg-Landau theory is nonlinear, non-pairwise forces between vortices are generically present. However, in simple single-component systems, such forces
do not affect structure formation. They merely decrease the two-body forces in dense vortex lattices, thus being responsible for crossover between known vortex solutions near H_{c1} and lattice solutions H_{c2} [23–25].

[31] For special values of the parameters $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$ the symmetry of the theory is enlarged to $U(1) \times U(1) \times Z_2$. If on top that $\gamma = \beta_1 = \beta_2$, the theory has an even higher symmetry group: $SU(2)$. These situations we do not consider here. We thus assume that $\alpha_1 \neq \alpha_2$.

[40] Recently the problem of the conditions of appearance of the subdominant component condensation in a single vortex core attracted interest in the context of cold atoms [41]. However the results from such electrically neutral systems are not straightforwardly applicable to the charged systems because of the difference between power-law (in the context of neutral systems) vs exponential (in charged systems) vortex core localization. Note also the difference in the expressions for the coherence lengths between this and the above quoted paper.

