Skip to main content
Article
Recommended Nomenclature for the Sapphirine and Surinamite Groups (Sapphirine Supergroup)
Mineralogical Magazine
  • Edward S. Grew, University of Maine - Main
  • U. Hålenius
  • M. Pasero
  • J. Barbier
Document Type
Review
Publication Date
8-1-2008
Disciplines
Abstract/ Summary

Minerals isostructural with sapphirine-1A, sapphirine-2M, and surinamite are closely related chain silicates that pose nomenclature problems because of the large number of sites and potential constituents, including several (Be, B, As, Sb) that are rare or absent in other chain silicates. Our recommended nomenclature for the sapphirine group (formerly-aenigmatite group) makes extensive use of precedent, but applies the rules to all known natural compositions, with flexibility to allow for yet undiscovered compositions such as those reported in synthetic materials. These minerals are part of a polysomatic series composed of pyroxene or pyroxene-like and spinel modules, and thus we recommend that the sapphirine supergroup should encompass the polysomatic series. The first level in the classification is based on polysome, i.e. each group within the supergroup Corresponds to a single polysome. At the second level, the sapphirine group is divided into subgroups according to the occupancy of the two largest M sites, namely, sapphirine (Mg), aenigmatite (Na), and rhonite (Ca). Classification at the third level is based on the occupancy of the smallest M site with most shared edges, M7, at which the dominant cation is most often Ti (aenigmatite, rhonite, makarochkinite), Fe(3+) (wilkinsonite, dorrite, hogtuvaite) or Al (sapphirine, khmaralite); much less common is Cr (krinovite) and Sb (welshite). At the fourth level, the two most polymerized T sites are considered together, e.g. ordering of Be at these sites distinguishes hogtuvaite, makarochkinite and khmaralite. Classification at the fifth level is based on X(Mg) = Mg/(Mg + Fe(2+)) at the M sites (excluding the two largest and M7). In principle, this criterion could be expanded to include other divalent cations at these sites, e.g. Mn. To date, most minerals have been found to be either Mg-dominant (X(mg) > 0.5), or Fe(2+)-dominant (X(Mg) < 0.5), at these M sites. However, X(mg) ranges from 1.00 to 0.03 in material described as rhonite, i.e. there are two species present, one Mg-dominant, the other Fe(2+)-dominant. Three other potentially new species are a Mg-dominant analogue of wilkinsonite, rhonite in the Allende meteorite, which is distinguished front rhonite and dorrite in that Mg rather than Ti or FC(3+) is dominant at M7, and an Al-dominant analogue of sapphirine, in which Al > Si at the two most polymerized T sites vs. Al < Si in sapphirine. Further splitting of the supergroup based on occupancies other than those specified above is not recommended.

Citation/Publisher Attribution
Grew, ES, Halenius, U, Pasero, M, and Barbier, J, 2008, Recommended Nomenclature for the Sapphirine and Surinamite Groups (Sapphirine Supergroup): Mineralogical Magazine, v. 72, p. 839-876.
DOI
10.1180/minmag.2008.072.4.839
Version
publisher's version of the published document
Citation Information
Edward S. Grew, U. Hålenius, M. Pasero and J. Barbier. "Recommended Nomenclature for the Sapphirine and Surinamite Groups (Sapphirine Supergroup)" Mineralogical Magazine Vol. 72 Iss. 4 (2008) p. 839 - 876
Available at: http://works.bepress.com/edward_grew/10/