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Part 1. Measurement Techniques in Terms of the Electrical Analogues 

Measurement of transmission parameters 
of porous sound absorbing materials 
by E. R. Wigan 

To help the reader to grasp unusual features of the test- chniques adopted this paper is broken into two parts: 
in Part 1 the electrical analogues of the acoustical syste s of Part 2 will be employed. In the second part the 
test-gear and its usage will be dealt with and related publ shed work discussed . 

ADOP TION OF the novel "pseudo-impedance " artifice is partly 
responsible for complicating the measurements ; although a 
little tedious to the user it makes measurements possible 
over a wide frequency-range without involving any " tuning " 
operation, so that the sample of material can be held in a 
short, rigid tube of fixed length. The electrical analogues 
that form the basis of this part of the paper are ju stified by 
the findings of Part 2 where it will be shown that sound 
pre ssure is attenuated in passing into the thickness of the 
test-material in much the same way t~at voltage is attenuated 
in travelling along an electrical transmission-line . The final 
stages of Part 2 describe how the primary acoustical trans­
mission constant s are derived ; Part 1 carries the analysis 
up to this same point but in terms of the electrical analogue. 

Occasionally it will be necessary to anticipate later findings 
but only to keep the discussion within proper bounds and 
in general this part will treat the behaviour of transmission 
lines by direct analogy as follows : 

Alternating sound pressure 
Alternating volume-flow of air 
Acoustical impedance 

Alternating p.d. 
Alternating current. 
Electrical impedance 

Measurement of the Propagation 
Constant y= ("-+ j ~) 

Fig . 1 includes the transmission-line which is to play the 
part of a sample of sound-absorbing material, and shows the 
test-conditions that will be applied to it: 

(a) an open circuit at the line output ; 
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(b) a terminal load equal to Zo, the characteristic trans­
mission impedance of the line ; 

(c) a known capacitive load (Cl , C2 etc.). 
In each case the input /output voltage-ratio, (note the 

inversion) is to be measured. 
We define these ratios as follows : 

E/Ea=/N<YJ/8 
E/Eb=/ T/'IJ - (1) 

with C= Cl , (E/Ec) 1=/ Nl /8l 
C = C2 etc. ( E/ Ee )2 = / N2 f!?1. .. etc. 

In order to obtain the arguments of the vector quantities 
isted a phase-sensitive device must be used( *) to measure the 
atios. To avoid typographical errors in what follows it is 
onvenient to write N <YJ, T, N1, N 2, etc, without reference to 
rgument , but it has to be borne in mind that these quantities, 
owever symbolised, have to be treated as vectors. 
The propagation constant y = (a:+j ~) is derived from N <YJ 

nd T as follows : 
From conventional transmission theory the relation 

etween N <YJ and Tis known to be 
2(N<YJ)= (T + 1/T) (2) 

This vector equation is solved graphically by the nomo­
aph Fig . 2. Notice that the graph can be "entered " with 

ether N <YJ known to derive T, or with T known to derive 
l\ <YJ. The pattern shown is repeated in other ,quadrants of 
t e complex plane by reflection in the X and Y axes, angles 
e nd 'IJ (both measured positively anti-clockwise) increasing 
t oughout each quadrant , in each of which they start and 
(*) Me asurements reported in Part 2 were made by the a.c. pot entiometer of Ref 2. 
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finish at equal values. This makes it easy to apply Fig. 2 
when 6 and ·'l occasionally slightly exceed 90°, as is the case 
in Part 2. · 

The diagram is rapidly constructed by carrying out graphic­
ally the instructions of Equation (2), /T/-'l being added 

vectorially to /1/T/-· 'l; to protect it, when in constant use, 

I l1 = lora_d_im_p_ed_an_c_el-~Z1 = oo-+ lrl, + li ~-}Xt 
with constants:- \ I \ C '-
Transmission line ---,::!---------
tX,/3 and r, per umt ' E, , l, Eb I T f, 
length and l, / ___ V ----- t-J/ 

i j 

Test/a/ Test/bl Test/cl 

Fig. I 

from the points of dividers it should be mounted on strong 
card. The reader should take note that since Zo is at this 
stage unknown the voltage-ratio E/Eb is not a measured 
quantity but one derived from the primary ratio-measurement 
E/Ea by reliance upon conventional transmission theory . 
In the electrical circuit considered here reliance is justified 
so we can proceed , but in the acoustical case reliance is 
justified only when the sample of absorbing material has the 
perfectly homogeneous structure that is assumed in the 
development of conventional transmission theory . 

Returning to the test-condition (b) : it can be seen that 
this test-condition is the same as measuring the voltage ratio 
T in a line of infinite length with the measuring . points 
separated by the length l of the short line actually tested. 
Thus we may apply the theory of infinite lines and derive 

Real axis 

Fig. 2 
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y, IX and ~ from T. (Note that the quoted quantities are 
intrinsic constants so allowance has to be made for line­
length /) . 

From Equation (1) we have, by definition: 
. T=/ Tb_ 

and from general theory: 
I . IX = Log e (IT/) 

or more concisely = Ln. /Tl 
while l. ~ (radians)= (·'l)Deg/(57 ·4) (3) 

From IX and ~ we construct y using the. conventional defi­
nition : 

W=~B ~ ~ 
Much later we shall need (y) 2, which is 

In Polar form : (y)2=/ (1X2+~2)/2. (Arc . Tan. _[3) (5
1 

' IX 

or Cartesian: =IX 2 - ~ 2+ 2j(1X~) (6) 
Study of Fig. 2 will show that there are obvious limitations 

to this process of deriving IX and ~ from N cx:i : for instance 
unless /Tl is at least 1 · 1 or 1 · 2, neither IX nor ~ can be derived 
accurately. Thus the transmission-line must be " long" 
enough for attenuation to exceed 1 to 2 dB and/or phase-shift 
to exceed 20-30 deg. (Thus in acoustic tests, for instance, we 
shall find it difficult to derive IX or ~ in soft, poorly attenuating 
materials when the frequency is below about 300 c/s, and 
even if the maximum sample-length (3 in.) is available; on 
the other hand , tests on samples of dense materials only 
1 in. thick are feasible at less than 150 c/s.) 

In most acoustical materials IX, ~ and y rapidly increase 
with frequency and to simulate this the electrical systems 
now to be discussed will be credited with the sa~e property. 

The Measurement of Zo 
(Note to the critical reader: In purely electrical systems Zo 

can be measured in half-a-dozen ways but since they cannot 
be copied with acoustical test-gear they are not mentioned 
here. Although the scheme below cannot be copied either, 
it is given detailed attention because the basic theory assoc­
iated with it leads on to the second scheme which is acous­
tically vjable.) 

Measurement of Zo without 
"pseudo-impedances" 

Reference will be made to Fig. 1 and the associated equa­
tions in Section (2). In test-condition (c) a term Xl will be 
introduced to represent the impedance of the load capacitance 
C = Cl ; similarly X2 when C = C2 ; again the voltage-ratio 
(E/Ec) 1 will apply to the case that C= Cl, and so on. 

Consider Z2, the (unknown) output impedance of the line 
when E is held° constant-as in Fig. (1)-as one of the 
Thevenin parameters, and Ea as the other. Then we may 
consider Eb as the p.d . across the load-impedance Zo 
applied to a circuit of e.m.f. Ea, ( = E/N cx:i), and internal 
impedance Z2. 
Whence 

Ea/Eb = (l + Z2 /Zo) 
and 

(Ea/Ec) 1= (i + Z2 /( - jXl) 
e have also from Equation (1): 

Ea = E/N cx:i 
Eb = E/T 

(Ec) 1 = E/N1 , (Ec)2 = E/N2 and so on 
rom (7-8-9): 

Z2 = (Ea/Eb - l) (Zo) = ( (Ea/Ec)i - 1) ( - jXI) ; 
Zo /( - jXl) = (NI -Ncx:i)/(T -Ncx:i ) 

hence 
(It will be seen that the unknown Z2 vanishes) 

(7) 

(8) 

(9) 

(10) 
(11) 

199 



quation (11) is solved by measurements on a 
fig . 3 in which arbitrary values of Noo, T and 
'ows have been assumed: 

N oo = /0·82/59· 00 
aFig . 2: --
70·00 (the point marked (*) in the Figure) 

Arb1tranly we make 
Nl=/l ·0/106·00 

and make 
( -jXl) =/ 1000/- 90·00 (ohms) 

From Fig. 3, or by resolution of vectors, we deduce the 
vectors 

(Nl-N oo)=/0·75/+160· 00 
(T-N oo )= /l ·21/ + 78 ·0 0 

From these data, and making use of Equation (11J, it is 
concluded that: 

/Zof!.= f 620/ -8. 00 at the frequency of test. 
Provided the diagram Fig. 3 is drawn on Polar graph paper 

it is possible with dividers and parallel-rulers to derive both 
the Modulus /Zo/ and the argument (/z) from the diagram 

without being involved in resolution ~ vectors. It will be 
seen that /z, the negative argument of Zo can be read from 
Fig. 3 by erecting a perpendicular (dotted) on vector (Nl­
N oo). 

It is important to notice that vector (T-N oo), in Equation 
(11), is related to the inverse of Zo in the same way that 
(Nl-N oo) is related to the inverse of Xl. In fact these vectors 
both represent admittances; it is this that accounts for the 
appearance of /z, the argument of vector (T-N oo) in the 

diagram, as a positive (anticlockwise) angle, whereas calcu­
lation has derived a negative argument for Zo-inversion 
of course reverses the sign. 

Following the same line of thought it is easily understood · 
that the difference-vectors Nl-N oo, N2-N oo, N3-Noo will 
be proportional to the load capacitances Cl, C2 and C3. 
Consequently, by making C2= 2(Cl), C3= 3(Cl) the diagram 

Fig. 3 
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provides a valuable check on the measurements, for the 
intervals along the line N3-N oo will then all be equal; thus 
a more precise estimate of Nl - N oo is found by dividing the 
interval N3-Noo by 3, and similarly with any other capaci­
tance-ratio. 

For reasons fully discussed in Part 2 it is difficult to simu­
late the above operations acoustically ; the "pseudo-imped­
ance" described in the next section overcomes the difficulties. 

Measurement of Zo with the aid of 
"pseudo-impedance" 

One of the acoustical difficulties just mentioned is the 
necessarily ~te input impedance of the probe-microphone 
used to observe the open-circuit pressure-ratio, corre­
sponding to E/Ea in Fig. 1, so here we shall deal with the 
generation of its analogue-a pseudo-infinite voltmeter 
impedance-before going on to the second problem of 
measuring Zo by _the same artifice. 
Pseudo-infinite voltmeter impedance. 
The meter D in Fig. 4a is imagined as · having a small 
resistance r-in order to simulate the finite probe microphone 
input-impedance. It will be shown how the p.d , eD across 

Transmission line Ea 

I 
@ 

1. 

Transmission line 

I 

® z.+ 
Fig. 4 

0 

Set then 
fix 

z. pseudo-infinite 

z. pseudo-capacitive 

this meter can be used to measure the open-circuit voltage 
Ea from the transmission-line, and thence N oo. The opera­
tion involves two stages of adjustment and the pseudo­
impedance is effective only when both stages are complete, 
and at the frequency at which the adjustments were made. 
At the end of Stage 2 (below) the quantity Za shown in 
the figure becomes the pseudo-impedance generated, At that 
stage Za= oo, the p.d. across Zais Ea and the current la = 
zero . 

To generate a pseudo-impedance two separate, but phase­
locked generators are needed-simulated in Fig . 4a, by 
el and e2 with an output-impedance S. (The output 
impedance of e 1 is ignored here because in the acoustical 
case there are means for eliminating it). It follows that E 
in Fig. 1 is represented by el in Figs. 4a and 4b. 

The two stages of setting up the pseudo-infinite impedance 
Za are as follows: 

Stage 1: X-X is broken and e2 set at a convenient value 
and fixed. 
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The meter voltage eD and the ratio eD/e1 are noted. 
Stage 2: X-X is closed and el adjusted until eD/e1 is 

restored in both modulus and argument. 
Then, since la=lb = zero, Za = oo and el /eD = Noo 

Q.E.F. 
(Notice that neither r nor S affects Za .) 

On detailed analysis it will be found that at the close of 
Stage 2 the meter-current is being entirely supplied by 
generator e2; in consequence both Ia and lb are zero and 
Zais effectively infinite. 

A point of no particular importance here-but which will 
arise in the acoustical case later- is that at the outset of 
Stage 1 the output voltage Ea which will result at the close 
of Stage 2 is already settled-in fact the voltage eD chosen 
in Stage 1 later becomes equal to Ea. 

In the acoustical case Ea corresponds to the output 
sound-pressure, and this must be chosen so that the whole 
test-system shall be no more than adequately loaded, foe if 
pressure were excessive, both the tested material and the 
sound-generators might be operating in a non-linear regime. 
The initial choice of eD in Stage 1 can make sure this will 
not occur . 

Having now established N oo with the aid of the low 
impedance voltmeter we can proceed to carry through the 
measurement of Zo using the same meter to apply pseudo­
capacitive loads to the transmission-line . 
Generation of Pseudo-capacitance. 
For this operation (see Fig. 4b) a third generator e3 is 
needed, like e2 phase-locked to el. (In practice e3 is 
made a part of e2). 

Having carried out Stages 1 and 2 above to obtain Noo, 
we have to make Za represent the reactance ( - jXl) used 
earlier :-

We proceed from Stage 2 withou't disturbing e1 or el: 
Stage 3. Break X-X. Temporarily connect a known capa­

citance Cl across meter D and. set e3 to restore 
eD/e1 to the value found at Stage I. 
Note the modulus and argument of e3. 

Stage 4. Disconnect Cl and close X-X. Readjust el to 
restore the value of eD/e1. Measure (el /Ea)l. 

Stage 5. Reverse e3. Adjust el to restore eD/e1. Measure 
(el /Ea)1. 

Then (el/Ea)1 = Nl, since Za = - jXI. 
(Quantity (el /Ea)l is of use only indirectly-see below.) 

These operations have effect as follows: 
At the end of Stage 3 the current flowing into capacitor 

Cl is provided solely by e3; so when Cl is removed, and 
Stage 4 completed, the capacitor-current is forced to flow 
from e3 as lb. From the point of view of the transmission­
line this is equivalent to a current flowing in the direction 
( - la). Thus the pseudo-impedance Za becomes +jXl at 
the end of Stage 4. 

To convert Za into - jXl the reversal at Stage 5 is required, 
followed by the re-setting of (ED e1); thereafter (el /Ea)1= 
NI, as required. 

As will be seen these operations put the current Ia 
strictly under control of e3; thus it is possible to simulate 
any multiple of Cl once the preliminary setting of e3 has 
been: established . For instance, if e3, at the end of Stage 3 
is multiplied by k, the following stages will lead to a pseudo­
capacitance (k.Cl). 

In Part 2 we shall take .full advantage of this facility to 
generate acoustical capacitances that are quite unattainable 
by direct methods for unless both capacitance and frequency 
are small, direct representation of capacitance by a closed 
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air-volume is confused by phase -errors-a matter more 
fully dealt with in Part 2. 

Use will be found later for the ratio (el /Ea)i, established 
at the end of Stage 4, in easing acoustical testing conditions. 

By means such as these, values of N oo, y, and Zo can be 
measured over a substantia l frequer.1cy-range; the next step 
is to deduce the values of the primary constants R, C and L 
and their disposition within the equivalent network that 
represents unit-length of the tested transmission-line. 

Deduct ions to be made from N,co 
Since N oo is the open-circuit voltage-ratio of the line repre­
sented, temporarily in Fig. 5 as a simple Tee-network, Noo 
at any chosen frequency is given by 

N oo= E/Ea= (l + P/ Q) 
Consequently, from a Polar plot of N oo it can be deduced 

whether any of the equivalent networks illustrated in the figure 
represent the performance of the tested line. 

It will be understood that the overall performance of the 
line cannot be represented at all frequencies by such simple 
diagrams, although they could apply precisely to very short 
lengths of line, or to the whole line at very low frequencies 
where attenuation was small. 

At the outset of the acoustical investigation such diagrams 
brought to light the extreme improbability of structures 
such as (5·2a), or even (5·3a). (The latter is conventionally 

~ [~[, 

L _______ J 

5.1 

r, r, 
~ -

o I C u@ 5.2 
N00=1+jw er1 

r, r1 

:7!E@ 5.3 
Na,=l+r1/r2 +jr,J er, 

r1 L L r1 

~ 
0 I D @ 5·4 
N00 = 1-ral LC +j(i) er1 

Fig. 5 

Real 
axis 

Real 
axis 

Real 
axis 

., 
N . 

a, 

f=O 
(§; 

r,) 

assumed in most theoretical approaches to acoustical trans­
mission-line problems). Plots of acoustical measurements of 
N ro seerried to agree most closely with Fig . 5.4b; to discover 
how closely it was necessary to measure Zo as well, as just 
described, and then to apply the method of analysis described 
in the final sections of this article . 

Introductory Note on the use of 
Circuit Model s 

When the measurement of y and Zo are not accurate the 
data, when plotted against frequency, fall irregularly about 
a smooth curve drawn among them. Where this curve has a 
rapid change of curvature, or the plotted data are widely 
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( 
R +jnK1R 

A, ~ 6.1 

b { .l - iK2R 0 T -n-

Real 
6.2 axis 

A, I R +jnK1R 
Real 

~ 6.3 
.1. - jK2R axis 

b, { 11(,T b, 

K4 R 

r' +jnKi r' 

A,{~ Real 1/r' 1/r" 
6.4 

r" +jnK/~" axis/ " 
b, ! .l - iK2R n=oo n=o 

TK,Rn 
Locus of ( 1/A,/ 

Fig. 6 

scattered, it is not possible to make the curve truly repre ­
sentative of the "average" data unless the general equatim , 
of the curve is available as a guide . From a circuit model the 
guiding equations can be derived . Some such models are 
shown in Fig. 6. 

The quantities Ao and Bo are defined in conventional 
transmission theory as: 
Ao= Total impedance of all "series -like" elements contained 

within unit length of the line which generate a back­
e.m.f. that opposes the transmitted current; and 

Bo= Total admittance of all "shunt-like" elements per unit 
length of the line which reduce the transmitted current 
by -passing some of it. 

Here; to keep all quantities in impedance form , we define : 
bo= I/Bo. 

Using Ao and bo and relying on conventional theory : 
Ao/bo=(y) 2 ' (12) 

and 
Ao . bo= (Zo) 2 (13) 

Whence: 
Ao = Zo (y) (14) 
bo= Zo /(y) (15) 

From the last two equations the values of Ao and bo, at each 
frequency , can be calculated from the already measured 
values of y and Zo. The model (Fig . 6) which best fits the 
deduced Ao and bo data is then used as a basis of further 
analysis . Here we shall not involve ourselves in making a 
choice but merely set out some data which have been tailored 
to fit Model (6· 1) which is typical of any conventional elec­
trical transmission line. Some of the other models are known 
to apply, at least approximately, to acoustical systems that 
will be examined in Part 2. 

It will be understood that the model is no more than a 
formal way of representing the tr ue situation , the electrical 
symbols merely indicating the general form of the algebraic 
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terms which express the quantities Ao and bo, The loci of 
each of these impedances are drawn in the figures. 

The K-quantities are non-dimensional and n is the fre­
quency in kc/s. 

Der iving t he Primary Constants 
from a Model 

Because the reader has already been warned that the following 
data will be based on model 6 · l he might suppose that the 
associated analysis will resolve itself into an arid mathematical 
excercise. In fact it will bring out important relationships 
between parameters that will prove of great value in Part 2 
and it will show that although the first analytical step involves 
Ao and bo only , much confirmatory information comes from 
the original y and Z o data. 

Because we use here dat a that have been tailored to fit 
model 6·1 there will be no "measurement errors" to contend 
with, and we shall defer to Part 2 the · treatment used in 
practice to allow for them ; here it will be assumed that 
columns 2 and 3 of Table I represent the measurements ; 
from these the other columns are derived by direct vector 
multiplication and division. 

TABLE I 

(Data for Analysis) 
n y Zo Ao bo 

(Freq: 
kc / s) (numeric) {ohms) (ohms) {ohms) 

0 ·1 0 . 89/46 ·0 5 11 ·2/ 43 ·0 6 9 ·94 / 3 ·0 0 125 . 0/9 0 ·0 2 

0·2 1 ·2 7/ 47 ·6 7 ·91 /4:l ·2 10 ·02/ 5 ·4 62 ·2/ 8TI 

0·5 2 ·03~9 5 ·07 / .l8 ·0 10 ·28/~ 25 ·0/89-9 

1 ·O 3 ·00 / 5~ ·2 3·74 / 31 ·75 11 ·20 / 26 ·45 12 -46 / 89 · 95 

2·0 4 ·76 / 67 · O 2 ·98 / 22 ·5 14 ·2 / 44 ·5 6 ·23/ 89 ·5 

Argument s: Posit ive: ( __ Negative: /--

From each column of this table relations between para­
meters Kl , K2 and R can be deduced when the loci of the 
tabulated data are plotted in the complex plane. 

Thus from Fig. 7.1 which is the locus of Ao: 
Ao = R ( l+ jkl )\..) K 

the locus gives 
R = ion, very closely; 

Also from the figure Kl = 0 ·5, which can be derived otherwise 
by plotting the tangent of the argument in column 3, and 
taking the slope. 

From direct inspection of column 5 it is clear that the bo­
structure is almost purely capacitive-departures from an 

Real axis 

ao• 

2 

60° Value 
2-0 of n 

0·2 
0·1 0• 

4 6 8 10·0 
Ohms 

Fig. 7· 1 
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argument of 90° are purely accidental here, but in a practical 
case would call for very close inspection as they might 
indicate that the proper circuit model was 6·2 or 6 ·3. 

However, the pure capacitance is supported when the 
quantity n(/bo/) is calculated and found to fluctuate only 
very slightly ,about the average 1 :25. 

Although the analysis could be counted complete at this 
stage with 

R = lO!l, 
K1 = 0 ·5, 

and 
K2 = 0·125, 

the additional loci of Figs. (7 .2) and (7.3) reinforce the 
evidence. 

These make use of the formulation s : 
(Zo)2= Ao . bo= R 2 (l +jKln). 

( - j K2 /n) 
whence 

n(Zo)2= R 2 (Kl . K2 . 11
2 - jK2) . 

And 
(y ) 2 = Ao/bo= (I + jKl l\) ( + j n/ K2) 

whence . 
(y) 2/n= n(KI /K2)+ j (I /K2). 

From the figures we deduce at once , using the imaginary 
parts : 

K2. R 2= 12·5 
and 

I/ K2 = 8·0. 

Real axis 5 10 
Ohms 

75 20 oo 
K2 R

2 = 72·5 

+140° Values of n 
2·0 

J... =8·0 
K2 

-10 

-20 

-80° 

Fig. 7·2 

+100° 

10 2·0; 

~ w,f(,l/1 

-60° 

-.90° +81]0 

Real axis 
-8 -i -I. -2 

Fig. 7·3 
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-20° 

-//JO 

-r60° 

But from the real parts , allowing for n and n2, we have 
estimates of Kl.K2 and K1 /K2 also. 
Thus it can be seen that the parameters can be inter-checked 
most efficiently should there by any doubt about the correct 
choice of the circuit model, or because the data themselves are 
corrupted by measurement-error s. Such a case will be treated 

3 

IX. and 1/31 

2 

+j/3 
radians 

4 

3 

2 

1-0 n 

Fig. 8· I 

2·0 
Values 
of n 

Locus of ;r 

IX. nepers 

Fig. 8·2 

in detail in Part 2, where most careful " smoothing " of 
corrupt data is needed. In such cases even the oc, f3 and y data 
come under suspicion and loci such as Figs . 8.1 and 8.2 are 
called for: these h.ave been cdnstructed from the data of 
Table 1. 

Conclusion 
This part of the paper has examined the mathematical theory 
that will justify the various acoustical operations that are 
the subject of Part 2. The mathematics having been disposed 
of it will be possible in Part 2 to deal with acoustical measure­
ments without having to divert attention from them to 
explain the underlying theory. 

Even so, in order to keep the discussion within bounds, 
it will be necessary to limit acoustical tests almost entirely to 
measurements on a single sample, namely 2 in. ofTherbloc-a 
material commonly used for heat-insulation as well as sound 
absorption and, which, because of its mechanical stability, 
is an excellent subject for investigation. The reader can 
obtain from Ref. 1 an idea of the ambit of the discussion to 
be presented in Part 2. 
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