Skip to main content
Article
Analyzing harmonic monitoring data using supervised and unsupervised learning
Faculty of Engineering - Papers (Archive)
  • Ali Asheibi, University of Wollongong
  • David Stirling, University of Wollongong
  • Danny Soetanto, University of Wollongong
RIS ID
25809
Publication Date
1-1-2009
Publication Details

Asheibi, A., Stirling, D. A. & Soetanto, D. (2009). Analyzing harmonic monitoring data using supervised and unsupervised learning. IEEE Transactions on Power Delivery, 24 (1), 293-301.

Abstract

Harmonic monitoring has become an important tool for harmonic management in distribution system. A comprehensive harmonic monitoring program has been designed and implemented on a typical electrical medium-voltage distribution system in Australia. The monitoring program involved measurements of the three-phase harmonic currents and voltages from the residential, commercial, and industrial load sectors. Data over a three year period have been downloaded and available for analysis. The large amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. More sophisticated analysis methods are required to automatically determine which part of the measurement data are of importance. Based on this information, a closer inspection of smaller data sets can then be carried out to determine the reasons for its detection. In this paper, we classify the measurement data using unsupervised learning based on clustering techniques using the minimum message length technique, which can provide the engineers with a rapid, visually oriented method of evaluating the underlying operational information contained within the clusters. Supervised learning is then used to describe the generated clusters and to predict the occurrences of unusual clusters in future measurement data.

Disciplines
Citation Information
Ali Asheibi, David Stirling and Danny Soetanto. "Analyzing harmonic monitoring data using supervised and unsupervised learning" (2009)
Available at: http://works.bepress.com/dstirling/35/