Skip to main content
Article
Predicting RNA-Protein Interactions Using Only Sequence Information
BMC Bioinformatics
  • Usha Muppirala, Iowa State University
  • Vasant G Honavar, Iowa State University
  • Drena Dobbs, Iowa State University
Document Type
Article
Publication Version
Published Version
Publication Date
1-1-2011
DOI
10.1186/1471-2105-12-489
Abstract
Background RNA-protein interactions (RPIs) play important roles in a wide variety of cellular processes, ranging from transcriptional and post-transcriptional regulation of gene expression to host defense against pathogens. High throughput experiments to identify RNA-protein interactions are beginning to provide valuable information about the complexity of RNA-protein interaction networks, but are expensive and time consuming. Hence, there is a need for reliable computational methods for predicting RNA-protein interactions. Results We propose RPISeq, a family of classifiers for predicting R NA-p rotein i nteractions using only seq uence information. Given the sequences of an RNA and a protein as input, RPIseq predicts whether or not the RNA-protein pair interact. The RNA sequence is encoded as a normalized vector of its ribonucleotide 4-mer composition, and the protein sequence is encoded as a normalized vector of its 3-mer composition, based on a 7-letter reduced alphabet representation. Two variants of RPISeq are presented: RPISeq-SVM, which uses a Support Vector Machine (SVM) classifier and RPISeq-RF, which uses a Random Forest classifier. On two non-redundant benchmark datasets extracted from the Protein-RNA Interface Database (PRIDB), RPISeq achieved an AUC (Area Under the Receiver Operating Characteristic (ROC) curve) of 0.96 and 0.92. On a third dataset containing only mRNA-protein interactions, the performance of RPISeq was competitive with that of a published method that requires information regarding many different features (e.g., mRNA half-life, GO annotations) of the putative RNA and protein partners. In addition, RPISeq classifiers trained using the PRIDB data correctly predicted the majority (57-99%) of non-coding RNA-protein interactions in NPInter-derived networks from E. coli, S. cerevisiae, D. melanogaster, M. musculus, and H. sapiens. Conclusions Our experiments with RPISeq demonstrate that RNA-protein interactions can be reliably predicted using only sequence-derived information. RPISeq offers an inexpensive method for computational construction of RNA-protein interaction networks, and should provide useful insights into the function of non-coding RNAs. RPISeq is freely available as a web-based server at http://pridb.gdcb.iastate.edu/RPISeq/.
Comments

This article is from BMC Bioinformatics 12 (2011): 489, doi: 10.1186/1471-2105-12-489. Posted with permission.

Rights
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright Owner
Muppirala et al
Language
en
File Format
application/pdf
Citation Information
Usha Muppirala, Vasant G Honavar and Drena Dobbs. "Predicting RNA-Protein Interactions Using Only Sequence Information" BMC Bioinformatics Vol. 12 (2011) p. 489
Available at: http://works.bepress.com/drena-dobbs/15/