Skip to main content
Article
Frequency Domain Measurements of Melt Pool Recoil Force using Modal Analysis
Scientific Reports
  • Tristan Cullom
  • Cody Lough
  • Nicholas Altese
  • Douglas A. Bristow, Missouri University of Science and Technology
  • Robert G. Landers, Missouri University of Science and Technology
  • Ben Brown
  • For full list of authors, see publisher's website., For full list of authors, see publisher's website.
Abstract

Recoil pressure is a critical factor affecting the melt pool dynamics during Laser Powder Bed Fusion (LPBF) processes. Recoil pressure depresses the melt pool. When the recoil pressure is low, thermal conduction and capillary forces may be inadequate to provide proper fusion between layers. However, excessive recoil pressure can produce a keyhole inside the melt pool, which is associated with gas porosity. Direct recoil pressure measurements are challenging because it is localized over an area proportionate to the laser spot size producing a force in the mN range. This paper reports a vibration-based approach to quantify the recoil force exerted on a part in a commercial LPBF machine. The measured recoil force is consistent with estimates from high speed synchrotron imaging of entrained particles, and the results show that the recoil force scales with applied laser power and is inversely related to the laser scan speed. These results facilitate further studies of melt pool dynamics and have the potential to aid process development for new materials.

Department(s)
Mechanical and Aerospace Engineering
Comments

U.S. Department of Energy, Grant DE-NA0002839

Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2021 The Authors, All rights reserved.
Publication Date
12-1-2021
Publication Date
01 Dec 2021
PubMed ID
34040081
Citation Information
Tristan Cullom, Cody Lough, Nicholas Altese, Douglas A. Bristow, et al.. "Frequency Domain Measurements of Melt Pool Recoil Force using Modal Analysis" Scientific Reports Vol. 11 Iss. 1 (2021) ISSN: 2045-2322
Available at: http://works.bepress.com/douglas-bristow/111/