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Summary

Studies of the behavior of biological systems often require monitoring of the expression of many genes in a

large number of samples. While whole-genome arrays provide high-quality gene-expression profiles, their high

cost generally limits the number of samples that can be studied. Although inexpensive small-scale arrays

representing genes of interest could be used for many applications, it is challenging to obtain accurate

measurements with conventional small-scale microarrays. We have developed a small-scale microarray

system that yields highly accurate and reproducible expression measurements. This was achieved by

implementing a stable gene-based quantile normalization method for array-to-array normalization, and a

probe-printing design that allows use of a statistical model to correct for effects of print tips and uneven

hybridization. The array measures expression values in a single sample, rather than ratios between two

samples. This allows accurate comparisons among many samples. The array typically yielded correlation

coefficients higher than 0.99 between technically duplicated samples. Accuracy was demonstrated by a

correlation coefficient of 0.88 between expression ratios determined from this array and an Affymetrix

GeneChip, by quantitative RT–PCR, and by spiking known amounts of specific RNAs into the RNA samples

used for profiling. The array was used to compare the responses of wild-type, rps2 and ndr1 mutant plants to

infection by a Pseudomonas syringae strain expressing avrRpt2. The results suggest that ndr1 affects a

defense-signaling pathway(s) in addition to the RPS2-dependent pathway, and indicate that the microarray is a

powerful tool for systems analyses of the Arabidopsis disease-signaling network.

Keywords: expression profiling, systems analysis, calibration probe, stable genes-based quantile normaliza-

tion, statistical model.

Introduction

In order to understand the behaviors of complex biological

systems, it is crucial to collect large amounts of quantitative

and context-dependent data, such as mRNA expression

profiles, under highly controlled environments with suffi-

cient spatial and temporal resolution. It is likely that such

data will need to be collected in numerous similar, but subtly

different, experimental conditions, and that accurate meas-

urements will be crucial for distinguishing small differences.
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If a data-collection method is expensive, such a study

involving analysis of many biological samples could be

economically impossible. Therefore the economy and

accuracy of highly parallel data-collection methods is a

central issue for systems analysis.

There are two major applications of mRNA expression

profiling. One is for gene discovery by the identification of

candidate genes based on expression changes associated

with a biological process of interest. The other is use of the

expression levels of many genes as a detailed ‘snapshot’

that describes the state of a biological system under a

particular set of conditions. These snapshots can be used to

infer the network structure of a system when combined with

specific perturbations to the system (Ideker et al., 2001). For

example, expression profiles provide detailed phenotypic

descriptions (snapshots) of mutants (perturbations), and

such snapshots can be used to infer the relationships among

the mutant genes (Glazebrook et al., 2003; Katagiri and

Glazebrook, 2003). Snapshots over the course of time can

reveal the dynamics of system behavior. For example, a

temporal examination of expression profiles revealed that

the path for differentiation of HL60 cells into neutrophil cells

after induction with retinoic acid is different from the path

after induction with DMSO, even though the final states as

differentiated neutrophils are identical (Huang et al., 2005).

Snapshots can also be considered as highly parallel and

sensitive assays in screens for mutations or chemicals with

specific effects on a system.

For gene-discovery applications, it is important to monitor

the expression of a large number of genes, but the number

of biological samples to be profiled is often small. For these

studies, commercially produced, high-density in situ oligo-

nucleotide-synthesized arrays, such as those produced by

Affymetrix or Nimblegen, are often a good option, as they

have a deep coverage of the genome and provide high

measurement accuracy. In contrast, for system snapshot

applications it may be sufficient to monitor only a few

hundred genes, but the number of biological samples

needed could be very large. The use of high-density arrays

for large numbers of samples can become prohibitively

expensive.

A possible solution to this problem is to use inexpensive,

small-scale custom arrays produced in-house that represent

only the genes of interest. However, it is challenging to

obtain accurate measurements with conventional small-

scale microarrays, for several reasons. First, hybridization is

typically done using a two-color method, in which mRNA

samples from two biological samples are labeled with two

different fluorophores and hybridized to a single array. The

comparison of data from two biological samples that were

not paired in a single hybridization results in a high error

rate, because calculation of the expression ratio between

unpaired samples involves at least two other measured

values. In system snapshot applications, it is desirable to

compare many different samples in many different combi-

nations, so the conventional two-color method is not ideal.

Second, powerful statistical methods that are used to

remove systematic errors from data obtained with large-

scale arrays are unsuitable for small-scale microarrays. This

is because these methods are based on the assumption that

some statistical characteristics of measurements from a

large number of randomly selected spots are the same,

irrespective of the biological samples analysed or of partic-

ular local areas of an array. This assumption is generally

false for small-scale microarrays, as the majority of the

probes monitor genes for which mRNA levels change under

the experimental conditions of interest. One example is

normalization of data from different arrays. Normalization

methods commonly used for data from large-scale microar-

rays, such as global normalization (GN; Affymetrix Microar-

ray Suite User Guide, ver. 5 at http://www.affymetrix.com/

support/technical/manuals.affx) and quantile normalization

(QN; Bolstad et al., 2003; Irizarry et al., 2003), assume that

the mean expression values or the expression value distri-

butions of the genes, respectively, are the same among

arrays, irrespective of biological samples. Therefore they

cannot be used for data from small-scale microarrays.

Another example is correction for effects of print tips and

uneven hybridization, because this assumes a balanced

distribution of the log ratio between two-color signals for a

large number of spots printed by different print tips or for

different areas of an array (Yang et al., 2002). Due to the

inability to apply these statistical correction methods, signi-

ficant systematic errors cannot be removed from conven-

tional small-scale microarray data.

We describe the design, production and use of a small-

scale microarray printed with 576 long oligonucleotide

probes for the study of Arabidopsis responses to pathogen

interactions. The probe sequences consisted of one probe

sequence for each of 464 pathogen-responsive genes and

107 genes with relatively stable expression levels, and five

random sequences unrelated to the Arabidopsis genome

sequence, to be used in spiking controls. We implemented

several unconventional design components to improve the

quality of the data obtained using this microarray, which we

call a ‘miniarray’. The expression values, rather than ratios,

were measured by adding a common probe to each spot and

using its signal to calibrate the amount of probe printed in

each spot (Dudley et al., 2002). Second, we dedicated 107

probes to genes expressed at relatively constant levels and

used these together with a modified QN method, resulting in

excellent array-to-array normalization. Third, we used an

array-printing pattern that allows us to use a statistical

model to estimate and correct systematic errors arising from

effects of print tips and uneven hybridization. In practice, we

obtained very high technical reproducibility and accuracy

using the miniarray. All the features of the miniarray can be

implemented easily for any small-scale printed microarray.
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Highly reproducible and accurate small-scale microarrays

should be helpful for many applications requiring measure-

ment of modest numbers of mRNAs in large numbers of

samples.

Results and discussion

Selection and evaluation of genes for the miniarray

We made the miniarray for studies of the Arabidopsis re-

sponse to pathogen attack. We selected 337 Arabidopsis

genes based on publicly available expression-profile data.

The goals of the gene selection for the miniarray were: (i) the

expression patterns of the selected genes should represent

diverse expression patterns observed among all the Ara-

bidopsis genes in pathogen-related experiments; (ii) the

expression levels of the selected genes should allow accu-

rate measurement. To achieve goal (i), the Arabidopsis

genes that respond to pathogens were classified into groups

according to the similarity in their expression patterns

through many different pathogen-related experiments, and

representatives of each group were selected. To achieve

goal (ii), for the representatives of each group, genes with

higher maximum expression levels and/or larger differences

between their maximum and minimum expression levels

were preferentially selected.

Expression-profile data in AffyWatch (http://affyme-

trix.arabidopsis.info/AffyWatch.html) were used for the

evaluation of the gene selection. The data were generated

using the ATH1 GeneChip, which covers most of the

Arabidopsis protein-coding genes. In this data set, 7002

pathogen-responsive genes were identified, as described in

Experimental procedures. The log2 expression ratios be-

tween treated and control samples were used in the follow-

ing calculation. Among the 337 selected genes, 321 were

found among the 7002 genes. For each of the 6681 excluded

genes (7002 minus 321 genes), its closest representative in

the 321 selected genes was identified according to the

highest uncentered Pearson correlation. This distribution of

the highest correlations is a measure of the degree of

representation of all the expression patterns among the 7002

genes by a set of selected genes. Figure 1(a) shows the

distribution of these best correlation values for the 6681

excluded genes (Miniarray, open bars). To increase the

resolution in the high correlation range, the arc cosine value

of the correlation value is used in Figure 1(a) (unit, radian; 0

and 1.57 radians for the correlations 1 and 0, respectively).

Twenty sets of 321 genes were randomly sampled from the

7002 genes, and the 20 resulting distributions of the highest

correlations were averaged and compared (random, shaded

bars). Random sampling of a given number of genes should

yield a set of genes very close to the optimal representation

for the sample size when the sample size is sufficiently large.

Only limited improvement in the distribution of the highest

correlations was observed when a set of 963 (three times

more) genes were randomly sampled (not shown), which

indicates that the sample size of 321 is sufficiently large. The

representation by our selection of 321 genes was very

similar to the average of the 20 randomly selected sets of 321

genes, and therefore very close to the optimum. Our

selected 321 genes are highly enriched for genes that have

high maximum expression levels and/or large differences

between the maximum and minimum expression levels

compared with the original population of 7002 genes

(Figure 1b,c). Thus we achieved goals (i) and (ii) in the gene

selection for the miniarray.

We added 127 empirically chosen marker genes for

various pathogen responses, resulting in 464 pathogen-

responsive genes for the miniarray. In addition, we selected

107 normalization genes the expression levels of which were

relatively stable among pathogen experiments, and that

represented a wide range of expression levels. Thus a total

of 571 Arabidopsis genes were selected for the miniarray

(Table S1). Using Picky (Chou et al., 2004), we selected a

single probe sequence for each gene, as well as five random

probe sequences not present in the Arabidopsis genome for

use as RNA spiking controls (total 576 target probes). Picky

selects probe sequences for similar thermodynamic

Figure 1. Pathogen-responsive genes for the miniarray.

(a) The distribution of the highest correlation between each of the 6681

excluded genes and the 321 genes selected for the miniarray (open bars) or

321 randomly selected genes (shaded bars). For the distribution with the 321

randomly selected genes, 20 random sets of 321 genes were generated and

the distribution results averaged. The largest SEM among shaded bars for the

random sets was 0.14% on the frequency scale. To increase the resolution in

the high-correlation range, the arc cosine-transformed correlation was used

(unit, radian) in the horizontal axis.

(b, c) The distribution of (b) maximum expression values; (c) difference

between maximum and minimum expression values of each gene among the

321 genes selected for the miniarray (open bars) or among the population of

7002 genes (shaded bars). Expression values are in log2-scale.
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properties in hybridization and for low cross-hybridization

probabilities.

Measurement of raw expression value

The amount of probe printed by an arrayer varies from

spot to spot. Therefore information about the amount of

probe DNA printed is needed to calibrate the signal from

the target hybridized to each spot and to calculate the

expression value. For this purpose, we used a calibration

(Cal) probe (‘common oligo reference’ in Dudley et al.,

2002). A fixed amount of a Cal probe with another ran-

dom sequence selected by Picky was mixed into each

target probe solution before printing. This allowed the

amount of target probe in each spot to be determined

using the signal from hybridization of a Cy5-labeled

oligonucleotide that is complementary to the Cal probe

(Cy5-cCal). We define the raw expression value of a par-

ticular gene at a spot as the signal ratio between the

Alexa Fluor 555-labeled target (green fluorescence) and

the Cy5-cCal (red fluorescence). We used the median of

the ratios at pixels in a spot to represent the ratio for that

spot. To increase the accuracy of the signal measurement

by the scanner, we used two different photo-multiplier

tube voltages for the target signal (green), and combined

them to obtain the raw expression value for each spot

(Dudley et al., 2002).

Other investigators have used a standard RNA sample

common to all the experiments (Iyer et al., 1999) or

genomic DNA (Talaat et al., 2002) as references. We did

not want to use a standard RNA sample as the reference,

because it is difficult to prepare a standard RNA sample

with consistent quality and composition of mRNA species

that can be used for many experiments over an indefinite

period. In addition, if RNA species for some probes are

scarce in the standard sample, so that the resultant signals

are weak, measurements made using those probes will

have large errors. We tried genomic DNA as a reference,

but found that it was unsatisfactory. Signals from each

spot for the target and the genomic DNA reference were

highly correlated, clearly indicating that the genomic DNA

did not accurately report the amount of probe DNA in each

spot (not shown). As the same fluorescence values for two

channels were obtained when an array was scanned in two

channels either at the same time or separately, optical

reasons (such as leak of excitation or emission light into

the other channel, fluorescence resonance energy transfer)

were excluded. We speculate that when target RNA

hybridizes to the probe, only a small part of the target

(50–70 nt) is occupied by the probe and the rest of the

target RNA sequence is available for hybridization with

genomic DNA. As the available part of the target sequence

is generally much longer than the probe, the genomic DNA

preferentially hybridizes to the target RNA.

Overlapping sub-array groups sharing the same target

probes

It is possible to estimate systematic errors, such as variation

due to print tips and uneven hybridization, if replicates of

each target probe are placed appropriately on the array. The

miniarray had eight replicates of each of 576 target probes

on a single array (4608 spots per array). A 4 · 4 print-tip

block (16 print tips) was used to print the array (288 spots per

print tip). A sector of the array that was printed by a single

print tip is called a sub-array. The 16 print tips resulted in 16

sub-arrays, as shown in Figure 2. Each target probe was

printed twice in each of four sub-arrays, such that the top

half of a sub-array is exactly the same as the bottom half.

Different shades of the sub-arrays in Figure 2 show eight

different groups of four sub-arrays that share the same tar-

get probes. Seventy-two target probes were printed to sub-

arrays 1, 2, 5 and 6 (Figure 2a) in duplicate, another 72 target

probes were printed to sub-arrays 6, 7, 10 and 11 (Figure 2b)

in duplicate, and so on. The probe-sharing groups are

symmetrical and circularly overlapping. These sharing

groups allow use of a linear model for the entire array, which

enables estimation of systematic errors as described below.

A simple procedure to generate this printing pattern is des-

cribed in Appendix S1.

Use of a statistical model to remove systematic errors

The symmetrically overlapping probe-sharing sub-array

group design allows us to fit the following linear model to

the raw expression value for each spot:

Sij ¼ lþ Ai þ Bj þ eij ðmodel1Þ

where Sij denotes the log2-transformed, raw expression va-

lue for the spot, l denotes a constant, Ai and Bj denote the

effects of ith gene and jth sub-array (or print tip), and eij

denotes the residual. For each gene, l þ Ai was defined as

the estimated expression value, although addition of the

constant l is arbitrary considering the following array-to-

array normalization process. The interaction A:Bij was

Figure 2. Probe-sharing sub-array groups.

Eight probe-sharing groups, each of which contains four sub-arrays. 72

probes were assigned to each of the probe-sharing sub-array groups and had

duplicates in each of the four sub-arrays in their corresponding probe-sharing

groups.
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ignored. Although ANOVA indicated that all Ai, Bj and A:Bij

were significant, using the data for each of four arrays used

in Figure 3 (not shown), the corrected Akaike’s information

criterion (AICc) values (Burnham and Anderson, 2002) were

smaller with the model using only Ai and Bj than with the

model including A:Bij (Table S2). A smaller AICc value indi-

cates a better model in terms of the balance between

goodness-of-fit and model complexity. Each sub-array spe-

cifies a particular spatial area, so model 1 can account for

systematic errors arising from uneven hybridization at a

spatial resolution corresponding to the sub-arrays, as well as

those arising from print-tip effects.

As shown below, after fitting model 1 the spatial

distribution of residuals within each sub-array was

uneven. We added an arbitrary fourth-order smoothing

function fj(xj,yj) specified for the jth sub-array to model 1,

yielding model 2:

Sij ¼ lþ Ai þ Bj þ fjðxj ;yjÞ þ eij ; where

fjðxj ; yjÞ ¼
X4

p¼1

Xp

q¼0

ajpqxq
j yp�q

j ðmodel2Þ

xj and yj are spatial coordinates along the row and the col-

umn of the jth sub-array, with the center of the jth sub-array

adjusted to (0, 0). Model 2 gave a lower AICc value than

model 1 (Table S2), indicating that addition of the smooth-

ing function is worthwhile. Again, l þ Ai was defined as the

estimated expression value for each gene.

Array-to-array normalization method

Array-to-array normalization was performed by applying a

modified QN to the expression values for the 107 normal-

ization genes. We modified the QN (Bolstad et al., 2003;

Irizarry et al., 2003) to compensate for the fact that the

number of normalization genes is not very large. The

expression values of the normalization genes were ranked

for each array. The average of the expression values for each

group of four genes with consecutive ranks was calculated

(104 averaged values per array). These averaged values from

each of the multiple arrays in an analysis set were subjected

to QN. Expression values within the range of the averaged

expression values were normalized proportionally accord-

ing to the normalized values of two flanking averaged val-

ues. Although we chose normalization genes that covered a

wide range of expression values, some pathogen-respon-

sive genes had expression values outside the range. This

may be unavoidable in our system, as some pathogen-

inducible genes are expressed at extremely high levels.

Expression values of these genes were normalized using a

regression line fitted to the averaged expression values of

normalization genes within 3 log2 from the boundary of the

range. The median of the averaged expression values of

normalization genes was arbitrarily adjusted to 4.5 to make

all the log2-transformed expression values positive. We call

this normalization method stable genes-based quantile

normalization (SBQ).

The performance of SBQ was evaluated using ATH1

GeneChip data for three diverse pathogen treatments from

separate AffyWatch experiments and their corresponding

control treatments. For each treatment–control combina-

tion, the raw intensity data for the entire arrays in .CEL files

were converted into the log2-transformed expression values

using RMAEXPRESS with either QN (whole-array QN) or no

normalization. We used the whole-array QN output as the

standard for properly normalized data. The expression

values for the 535 genes which are common to the ATH1

GeneChip and the miniarray, and exclude genes subject to

cross-hybridization, were extracted from the no-normaliza-

tion output. The no-normalization output of the 535 genes

was subjected to SBQ, QN, GN, or no normalization. Note

that, at this stage, normalization methods were applied only

to the data consisting of the biased set of 535 genes. After

the normalization, for each gene the expression values from

the replicates were averaged, the log2 expression ratio

Figure 3. Application of statistical models improved technical reproducibil-

ity.

Estimated expression values for all genes from technical duplicates with the

Psm sample were compared after four processing methods.

(a) For each probe, the data from one sub-array were randomly selected, and

the average of the duplicates in the sub-array was used as the estimated

expression value.

(b) The average of eight replicates for each probe was used as the estimated

expression value.

(c) The estimated expression value was calculated using model 1.

(d) The estimated expression value was calculated using model 2.

r, Correlation coefficient; a, slope; b, y-intercept of the regression line.
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between the treatment and control was calculated, and the

difference between this log2 expression ratio and the log2

expression ratio similarly calculated from the whole-array

QN output was determined. For each treatment, the square

of the log2 expression ratio difference was calculated for

each gene, and the average of the squared values through

the genes is shown in Table 1. For all the treatments, SBQ

resulted in the log2 expression ratio clearly closest to that

determined from the whole-array QN output. As expected,

QN and GN did not perform well. Even in the worst case

[Pseudomonas syringae pv. tomato DC3000 (Pst) treatment],

SBQ yielded the average of the squared difference from the

whole-array QN data of 0.017 (log2)2, which is equivalent to

approximately 9.5% difference in the expression ratio. We

conclude that the performance of SBQ is satisfactory.

Importance of amplifying the target

For the miniarray, a modified Eberwine method (Phillips and

Eberwine, 1996), a common target-labeling method for

commercial microarray platforms, was used to linearly am-

plify the labeled target as cRNA. This resulted in excellent

technical reproducibility and accuracy, as shown below.

Initially, we tried labeling the target by directly incorporating

a fluorescence-labeled nucleotide into the first cDNA strand,

which is a target-labeling method commonly used for prin-

ted microarrays. In agreement with Stoyanova et al. (2004),

the direct cDNA-labeling method resulted in poor technical

reproducibility. Furthermore, it resulted in very poor accu-

racy based on comparison with results from Affymetrix

GeneChips (data not shown). These results suggest that

some data from microarray experiments that employed

direct cDNA labeling may be inaccurate, and should be

interpreted cautiously.

High technical reproducibility

We analysed data obtained from two biological samples.

Leaf tissues of wild-type Arabidopsis thaliana accession Col-

0 were harvested 1 day after infection by either the bacterial

pathogen P. syringae pv. maculicola strain ES4326 at a dose

of 1 · 105 cfu ml)1 (Psm sample) or a mock treatment (mock

sample). Each RNA sample was divided into two aliquots,

which were labeled separately and hybridized to the min-

iarrays. We refer to these comparisons as technical dupli-

cates. To assess the effects of statistical methods on

technical reproducibility, the spot-by-spot raw expression

values were processed into estimated expression values for

each gene in four different ways for the Psm sample (Fig-

ure 3). First, for each probe one print tip out of four was

selected randomly, and the raw expression values from two

spots printed by this print tip were averaged (this mimics a

conventional small-scale array, Figure 3a); second, the raw

expression values from eight replicated spots for each probe

were averaged (Figure 3b); third and fourth, models 1 and 2

(Figure 3c,d respectively) were fitted to the raw expression

values. After each processing method, the output data for

the two arrays were normalized using SBQ. Comparison of

Figure 3(a,b) shows that increasing the number of replicates

from two to eight, and/or printing each probe with multiple

print tips, improved the technical reproducibility as both the

correlation coefficient (r) and the slope (a) of the regression

line became closer to 1. Comparison of Figure 3(b,c) shows

that fitting model 1 yielded better technical reproducibility

than averaging. Comparison of Figure 3(c,d) shows that

inclusion of the smoothing function does not obviously

affect technical reproducibility. Similarly, comparison of the

technical duplicates of the mock sample showed an

improvement in technical reproducibility by increasing the

number of spots per probe and by fitting the statistical

models, as the correlation coefficients between the technical

duplicates were 0.942, 0.966, 0.978 and 0.979 for duplicates

by one print tip, average of eight spots, models 1 and 2,

respectively (not shown). We conducted two additional

comparisons of technical duplicates, which resulted in cor-

relation coefficients of 0.996 and 0.991 after fitting model 2

(not shown). These high correlation coefficients between

technical duplicates demonstrate the high technical repro-

ducibility achieved by the miniarray.

The spatial distributions of the residuals on the miniarray

vary depending on the processing methods used

(Figure 4a–c, left panels). The uneven spatial residual distri-

bution after averaging eight replicates (Figure 4a) is to some

extent corrected by model 1 (Figure 4b), although an

uneven residual distribution within each sub-array is still

noticeable. Inclusion of the smoothing function in model 2

evened out the spatial distribution of residuals (Figure 4c).

The right panels of Figure 4(a–c) show that the residual

values were reduced by implementing model 1 (Figure 4b),

and reduced further by inclusion of the smoothing function

(Figure 4c). Based on this result that the distribution of the

residuals is even using model 2, and the fact that model 2

gives a lower AICc than model 1, we decided to use model 2

as the routine method for calculation of the estimated

expression value for each gene.

The eight replicates of each probe make the estimated

expression values robust against partial loss of data. When

Table 1 Average of squared difference in log2 expression ratio from
the whole-array quantile normalization (QN)

Sample compared
(time) SBQ QN GN

No
normalization

Pst (24 h) 0.017 0.619 0.603 0.062
Flg22 (4 h) 0.015 0.186 0.180 0.040
Botrytis (48 h) 0.009 0.471 0.448 0.009

SBQ, stable genes-based quantile normalization; GN, global normal-
ization.
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data for 922 randomly chosen spots (20% of the total) were

removed, the correlation coefficient and the slope of the

regression line of the estimated expression values obtained

using the complete data and the depleted data were

0.9988 � 0.0001 and 0.9999 � 0.0018, respectively

(mean � SD, 100 simulations). Losing data from one area

of an array is a common technical problem that can be

caused by a bubble in the hybridization solution. To mimic

this, data in a randomly selected 17 · 17-spot area (289

spots) were removed. The correlation coefficient and the

slope of the regression line of the estimated expression

values obtained using the complete and the depleted data

were 0.9998 � 0.0001 and 0.9996 � 0.0020, respectively

(mean � SD, 100 simulations). Therefore the estimated

expression values remain reliable when some data are lost

due to small defects in array printing or hybridization.

Based on the high level of technical reproducibility

obtained, we conclude that it is unnecessary to run technical

replicates when using the miniarray. If a conventional two-

color method were used, a dye-swap technical replicate for

each pair of samples would be necessary. Omission of

technical replicates dramatically reduces the cost of experi-

ments.

High measurement accuracy

To evaluate the accuracy of measurements, the estimated

expression values obtained from the miniarray were com-

pared with those obtained from the Affymetrix ATH1 Gene-

Chip with the same Psm and mock samples. High technical

reproducibility and accuracy of the ATH1 array have been

demonstrated (Redman et al., 2004). As differences in

hybridization efficiencies of different probes for the same

gene are expected, data generated using different microar-

ray platforms must be compared as expression ratios rather

than expression values. The log2-transformed expression

ratios between the Psm and mock samples were calculated

using the mean values of the technical duplicates of each

sample for the miniarray, and using single-array data for

each sample from the ATH1 array. The expression ratios

from the two platforms for the common 535 genes (repre-

sented by both dark blue and red dots) are shown in

Figure 4. Precision and accuracy of the miniarray.

(a–c) Spatial (left panels) and value (right panels) distributions of the residuals

at spots in one of the Psm arrays: (a) when the average of eight replicates was

used; (b) when model 1 was used; (c) when model 2 was used. Yellow and

blue indicate positive and negative residuals, respectively (see color scale).

(d) Comparison of expression ratios determined from measurements made

by the miniarray and the Affymetrix ATH1 GeneChip. The log2-transformed

expression ratios between the Psm and mock samples are shown. Red dots,

expression ratios of 140 genes that had the 140 lowest expression values

measured by the miniarray in either Psm or mock samples among the 535

genes common to the two arrays; dark blue dots, expression ratios of the rest

(395) of the 535 common genes.

(e) Comparison of expression ratios between Psm and mock samples for

selected genes measured by the miniarray, ATH1 GeneChip and qRT–PCR.
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Figure 4(d). Virtually no gene shows a clear qualitative dis-

crepancy in expression ratios (for example, one gene in-

duced in one platform and repressed in the other): the

second (top left) and fourth (bottom right) quadrants of

the plot are almost empty. The correlation coefficient and

the slope of the regression line are 0.88 and 1.18, respect-

ively. This level of agreement with GeneChip results is

substantially higher than those reported for other custom

microarray platforms (Barczak et al., 2003; Schlingemann

et al., 2005).

The slope of the regression line, which is >1, indicates that

the expression ratio measured by the miniarray tends to be

smaller than that measured by the ATH1 array. We hypo-

thesized that this underestimate of the expression ratio by

the miniarray is a result of the narrower dynamic range of

the miniarray. The dynamic range is the range in which the

relationship between the fluorescent signal and the amount

of target in the hybridization solution is linear. In fact, when

140 genes showing the lowest expression values measured

by the miniarray (red dots) were removed, the correlation

coefficient and slope improved to 0.92 and 1.06, respectively

(Figure 4d, dark blue dots only). Therefore the dynamic

range of the miniarray measurement is narrower on the

lower end than for the ATH1 array. The difference in dynamic

range varies by gene, but a rough estimate is that the lower

end of the miniarray dynamic range is approximately eight

times (3 log2) higher than that of the ATH1 array.

For nine genes, we also compared the expression ratio

determined by quantitative RT–PCR (qRT–PCR) (Figure 4e).

These genes were chosen based on the diversity among

expression level, induction or repression after Psm inocula-

tion, degree of agreement between the microarray platforms

and possibility of cross-hybridization. Although some

expression ratios determined from the miniarray measure-

ments were underestimated, due to its narrower dynamic

range, overall data from both microarray platforms agreed

with data from qRT–PCR.

We further tested the accuracy of the miniarray meas-

urement using RNA spiking controls. The miniarray has

five spiking control probes (1–5). Each of the spiking

control RNAs 1, 3, 4,and 5 has an approximately 600-nt

sequence unrelated to the Arabidopsis genome sequence,

the same sequence as the corresponding spiking control

probe, and a polyA tail. The spiking control RNAs 1, 3, 4

and 5 were mixed into 1 lg total RNA at 400, 40, 4 and

0.4 pg, respectively. As a negative control, spiking control

RNA 2 was not included. Fifteen slides were hybridized

with targets including the spiking controls. As shown in

Figure 5, the linearity of the dose–signal relationships was

excellent between spiking controls 3–5. The expression

value for spiking control probe 1 appeared to have reached

saturation. About 400 out of 571 genes measured in the

experiment above were within the range covered by

spiking controls 3–5.

ndr1 affects a signaling pathway(s) in addition to the RPS2-

dependent one

The miniarray was used to compare the responses of

wild-type (RPS2 NDR1), rps2-101C and ndr1-1 plants to a

Pst strain expressing avrRpt2 (Pst/avrRpt2). The resistance

response is conditioned by the RPS2 resistance gene

when the bacterial strain expresses the corresponding

avirulence gene avrRpt2 (Bent et al., 1994; Mindrinos

et al., 1994). The ndr1 mutation blocks the resistance re-

sponse mediated by RPS2 (Century et al., 1995). Leaves

from the plants were collected 6 h after inoculation of Pst/

avrRpt2 at 1 · 108 cfu ml)1. Two independent sets of

experiments were performed. The expression data ob-

tained from the miniarrays were analysed using the sig-

nificance analysis of microarrays (SAM; Tusher et al.,

2001). In this experiment, another ndr1-1 plant was

included as the fourth genotype, the identity of which was

unknown to the experimenter (ndr1-1 blind). The profiles

from the ndr1-1 and ndr1-1 blind plants were used

empirically to set a critical false discovery rate (FDR) in

SAM. Between the ndr1-1 and ndr1-1 blind plants, no

gene was found significant at FDR 6 0.25 or lower. In

other pairwise comparisons of genotypes, a more con-

servative critical FDR of 0.2 was used to discover the

genes with significantly different expression levels. The

numbers of genes tested significantly different were 70

and 165 comparisons of wild type and rps2-101C, and

wild type and ndr1-1, respectively (the fold change and q

value for each comparison are listed in Table S3). The

genes listed as significantly different between wild type

Figure 5. Expression value measurements for spiking controls.

Amounts and mean of estimated expression values of spiking controls 1, 3, 4

and 5 from 15 miniarrays are plotted. Both axes are in log2-scale. Error bars,

SEM.
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Table 2 The ndr1-specific genes

Gene ID
PAMPs-
inducible? Annotation

At1g02450 NPR1/NIM1-interacting protein 1 (NIMIN-1)
At1g03850 Y Glutaredoxin family protein
At1g08830 Superoxide dismutase (Cu-Zn) (SODCC)/copper/

zinc superoxide dismutase (CSD1)
At1g11310 Y Seven transmembrane MLO family protein/

MLO-like protein 2 (MLO2)
At1g21240 Wall-associated kinase, putative
At1g28480 Y Glutaredoxin family protein
At1g45145 Y Thioredoxin H-type 5 (TRX-H-5) (TOUL)
At1g59870 ABC transporter family protein
At1g74710 Isochorismate synthase 1 (ICS1)/isochorismate mutase
At1g75040 Pathogenesis-related protein 5 (PR-5)
At2g05940 Y Protein kinase, putative
At2g18680 Y Expressed protein
At2g19190 Y Light-responsive receptor protein kinase/senescence-responsive

receptor-like serine/threonine kinase, putative (SIRK)
At2g28400 Y Expressed protein
At2g29350 Tropinone reductase, putative/tropine dehydrogenase, putative
At2g29460 Y Glutathione S-transferase, putative
At2g30490 Y trans-cinnamate 4-monooxygenase/cinnamic acid

4-hydroxylase (C4H) (CA4H)/cytochrome
P450 73 (CYP73) (CYP73A5)

At2g30550 Y lipase class 3 family protein
At2g37040 Y Phenylalanine ammonia-lyase 1 (PAL1)
At2g40140 Y Zinc finger (CCCH-type) family protein
At2g42360 Y Zinc finger (C3HC4-type RING finger) family protein
At2g44490 Glycosyl hydrolase family 1 protein
At2g45170 Autophagy 8e (APG8e)
At2g45570 Cytochrome P450 76C2, putative (CYP76C2) (YLS6)
At3g09010 Y Protein kinase family protein
At3g12580 Y Heat shock protein 70, putative/HSP70, putative
At3g13950 Y Expressed protein
At3g28510 AAA-type ATPase family protein
At3g28540 AAA-type ATPase family protein
At3g28930 avrRpt2-induced AIG2 protein (AIG2)
At3g52430 Phytoalexin-deficient 4 protein (PAD4)
At3g54420 Y Class IV chitinase (CHIV)
At4g04490 Y Protein kinase family protein
At4g14365 Y Zinc finger (C3HC4-type RING finger) family

protein/ankyrin repeat family protein
At4g23150 Y Protein kinase family protein
At4g25900 Y Aldose 1-epimerase family protein
At4g34230 Y Cinnamyl-alcohol dehydrogenase, putative
At4g35180 Y Amino acid transporter family protein
At4g36990 Y Heat shock factor protein 4 (HSF4)/heat shock

transcription factor 4 (HSTF4)
At4g39030 Enhanced disease susceptibility 5 (EDS5)/salicylic

acid induction deficient 1 (SID1)
At4g39830 Y L-ascorbate oxidase, putative
At4g39950 Cytochrome P450 79B2, putative (CYP79B2)
At5g08240 Y Expressed protein
At5g12030 17.7 kDa class II heat shock protein 17.6A (HSP17.7-CII)
At5g13320 Y Auxin-responsive GH3 family protein
At5g22570 WRKY family transcription factor
At5g26920 Y Calmodulin-binding protein
At5g47120 Y Bax inhibitor-1 putative/BI-1 putative
At5g52760 Y Heavy metal-associated domain-containing protein
At5g60800 Heavy metal-associated domain-containing protein
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and rps2-101C were almost all different between wild

type and ndr1-1 (66 out of 70 genes; among the 66 genes,

22 were expressed at levels higher than the wild-type in

both rps2-101C and ndr1-1, and 44 were expressed at

lower levels in both rps2-101C and ndr1-1), which con-

firms that ndr1-1 blocks the RPS2-mediated resistance

pathway.

We were intrigued by the fact that substantially more

genes were affected by ndr1-1 than rps2-101C in compar-

ison with the wild type. We speculated that ndr1-1 affects

some defense-signaling pathway(s) in addition to the RPS2-

dependent pathway. We defined an ndr1-specific gene as a

gene that was significantly different in the comparison

between ndr1-1 and wild type, but not between rps2-101C

and wild type, and had lower expression levels in ndr1-1

than the wild type. Fifty ndr1-specific genes were found

among the 535 genes common between the miniarray and

the ATH1 GeneChip (Table 2). A canonical pathogen-

associated molecular patterns (PAMPs)-inducible marker

gene FRK1 (At2g19190; Asai et al., 2002) was among the 50

genes, suggesting involvement of NDR1 in the PAMPs-

response pathway. To test this idea, we defined PAMPs-

inducible genes as those for which expression levels were

significantly increased in at least two of three PAMPs

treatments: flagellin fragment 22 (flg22), bacterial lipopoly-

saccharides (LPS), and Pst hrcC (AffyWatch data) (He et al.,

2006). In this case, as the data did not allow us to determine

the critical FDR empirically, a conventional critical FDR of

0.05 was used. Of the 535 genes common to both arrays,

121, including FRK1, were identified as PAMPs-inducible.

Thirty-one of these 121 genes were ndr1-specific

(Table S3). Fisher’s exact test showed that the PAMPs-

inducible genes were significantly enriched in the ndr1-

specific genes (P ¼ 2.7 · 10)10, two-tail). This result

strongly suggests that ndr1-1 affects at least part of the

PAMPs response.

The notion that ndr1 affects the PAMPs-response path-

way is consistent with the prior observation that ndr1-1

plants show higher susceptibility to the virulent strain Pst

than the wild-type plant at early time points (Century

et al., 1995; Tao et al., 2003). At early time points, the

PAMPs-response pathway is compromised in ndr1-1, so

the virulent strain grows better in ndr1-1 plant than in

wild type. Later, type III effectors delivered from the

virulent strain inhibit the PAMPs-response pathway in

wild-type plants, factors other than the PAMPs-response

pathway become limiting on bacterial growth, and the

difference in the bacterial counts between ndr1-1 and wild

type diminishes. RPS2 protein physically interacts with a

negative regulator of the PAMPs response, RIN4 (Axtell

and Staskawicz, 2003; Kim et al., 2005; Mackey et al.,

2003). Although physical interactions between NDR1 and

RPS2/RIN4 proteins have not been demonstrated, ndr1

may affect the PAMPs-response pathway via RIN4.

Concluding remarks

We have demonstrated that it is feasible to produce a highly

reproducible and accurate, small-scale microarray printed

with long oligonucleotide probes. Array-design components

that enabled measurement of the expression value, use of

SBQ, and use of powerful model-based statistics, as well as

selection of the genes on the array, were critical for success.

The designs and methods used for this miniarray could be

easily implemented for other small-scale microarrays. To

understand the behavior of a biological system, it is crucial

to collect many system snapshots, such as those with dif-

ferent mutant backgrounds, with different concentrations of

stimuli, at many different time points, etc. We expect that

high-performance small-scale microarrays will make such

projects involving system snapshot applications of mic-

roarrays much more economical.

Experimental procedures

All the oligonucleotide sequences and other information required to
produce the miniarray, and all the microarray data obtained in this
study, were submitted to Gene Expression Omnibus. Printed arrays
are also available for use by other groups, provided compensation
for materials and printing costs can be arranged. All the novel
materials and Perl scripts used in the study, and detailed laboratory
protocols, are available for non-profit research upon request. Refer
to Appendix S1 for details of the methods.

Plants and bacteria

Arabidopsis was wild-type accession Columbia (Col-0), ndr1-1
(Century et al., 1995) or rps2-101C (Yu et al., 1993), both in the Col-0
background. Plants were grown in a controlled environment
chamber at 22�C, with 75% RH and a 12/12-h light/dark cycle. Leaves
of 4-week-old plants were infiltrated with the bacterial strain Psm or
Pst/avrRpt2 at indicated doses using a needle-less syringe (Katagiri
et al., 2002).

Selection and evaluation of pathogen-responsive genes for

the miniarray

Published expression-profile data (Glazebrook et al., 2003; Tao et al.,
2003; van Wees et al., 2003; Whitham et al., 2003) generated using
the AtGenome1 Affymetrix GeneChip� (Santa Clara, CA, USA),
which has probes for approximately 8000 genes, and expression-
profile data from experiments ‘Oligogalacturonide treatment of
seedlings’, ‘Response to Erysiphe orontii infection, time course
experiment’ and ‘Botrytis cinerea infection, 18 and 48 hpi’ in the
Integrated Microarray Database System (http://ausubellab.mgh.
harvard.edu/imds), which were generated using the ATH1 Gene-
Chip, were used for miniarray gene selection. As many of the data
were from AtGenome1 experiments, we focused on the approxi-
mately 8000 genes represented by AtGenome1. In each experiment,
the genes were classified into groups according to agglomerative
hierarchical clustering based on the log2-transformed expression
ratios to appropriate controls, and they were labeled with arbitrary
one-letter group names. The group names from multiple experi-
ments for each gene were concatenated to make a string of letters
representing the expression-pattern class of the gene defined in the
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experimental set. Then, from each expression-pattern class,
representative genes were selected that have high maximum
expression levels and/or large differences between the maximum
and minimum expression levels in the experimental set.

The data used for the evaluation were compiled from experi-
ments ‘AtGenExpress: Effect of ibuprofen, salicylic acid and dami-
nozide on seedlings’ (only the data for ibuprofen and salicylic acid
were used), ‘AtGenExpress: Pathogen Series: Pseudomonas half
leaf injection’, ‘AtGenExpress: Response to bacterial-(LPS, HrpZ,
Flg22) and oomycete-(NPP1) derived elicitors’, ‘AtGenExpress:
Pathogen series: Response to Botrytis cinerea infection’, ‘AtGenEx-
press: Pathogen series: Response to Erysiphe orontii infection’,
‘AtGenExpress: Response to virulent, avirulent, typeIII-secretion
system deficient and nonhost bacteria’, ‘AtGenExpress: Methyl
jasmonate time course in wild type’, ‘AtGenExpress: Response to
Phytophthora infestans’, ‘Impact of Type III effectors on plant
defense responses’, ‘Hydrogen peroxide stress and Zat12 over-
expression in Arabidopsis’ and ‘Transcriptome changes of Arabid-
opsis during pathogen and insect attack’ in NASC AffyWatch.
The .CEL files were pre-processed using RMAEXPRESS (http://
rmaexpress.bmbolstad.com) using QN in each experiment to obtain
the log2-transformed expression values for each gene. Replicated
array data were combined into single samples by averaging. Then
the log2 expression values were subjected to QN through all the
experiments. Note that this results in data for each sample having
exactly the same distribution of log2 expression values. The genes
that exceeded 3 log2 above the minimum value in at least one
sample were selected (15 863 genes). The log2 expression values
were floored at 1 log2 from the minimum value. In each experiment,
the genes that show at least 1 log2 expression difference (twofold
change) in at least one treated sample compared with the appro-
priate control were selected, and the genes that were selected in at
least one experiment and that have corresponding AGI codes were
designated pathogen-responsive (7002 genes). The ensuing evalu-
ation procedure was performed as described in Results and
Discussion.

Fabrication of the miniarray

Picky (Chou et al., 2004) was used to select candidate probe se-
quences (50–70mers) for all Arabidopsis genes (The Arabidopsis
Information Resource, http://arabidopsis.org) ATH1 ver. 012222004)
and 10 500-nt random sequences. For each of the 464 pathogen-
responsive genes and 107 normalization genes from Arabidopsis,
one probe sequence was chosen based on its proximity to the 3¢ end
of the transcript. Five spiking control probe sequences (1–5) were
chosen from Picky-selected random sequences to use as RNA spi-
king controls.

The oligonucleotides for the target probes were suspended in
Pronto! Universal Spotting Solution (Corning Life Sciences, Acton,
MA, USA) at 0.9 mg ml)1 and aliquoted to six 96-well plates
(designated 1A–6A). The Cal probe was added to each well at
0.25 mg ml)1. The miniarray was printed on UltraGAPS slides
(Corning Life Sciences) at the Stanford Functional Genomics Facility
(Stanford, CA, USA).

Preparation of spiking control RNAs

We constructed plasmids pSP64bb1sp1, pSP64bb2sp3,
pSP64bb2sp4 and pSP64bb2sp5 for in vitro transcription of spiking
control RNAs 1, 3, 4 and 5, respectively. These sequences were
submitted to GenBank (accessions DQ 480366, DQ 480367, DQ
480368 and DQ 480369, respectively). Each of these plasmids has

the SP6 promoter, a 579- or 584-nt backbone sequence, the cor-
responding spiking control probe sequence, and a polyA sequence,
in this order in the vector pSP64poly(A) (Promega, Madison, WI,
USA). The backbone sequences were made by concatenating nine
of the Picky-selected random sequences. The plasmids were linea-
rized by an EcoRI digestion at the end of the polyA sequence and
transcribed in vitro with SP6 RNA polymerase to produce approxi-
mately 680-nt polyA RNAs that have the corresponding spiking
probe sequences between the backbone sequence and the polyA
tail. The spiking control RNAs were purified using the RNeasy mini
kit (Qiagen, Valencia, CA, USA) after DNase treatment (Promega),
and mixed into the target RNA samples.

Target preparation, miniarray hybridization and data col-

lection

Total RNA was prepared using TRIzol (Invitrogen, Carlsbad, CA,
USA) with the RNeasy mini kit (Qiagen) and multiple isopropanol
precipitations. To amplify and label the target, AminoAllyl Mes-
sageAmp II aRNA Amplification kit (Ambion, Austin, TX, USA) and
Alexa Fluor 555 carboxylic acid, succinimidyl ester (Invitrogen) were
used. Five lg amplified RNA and 50 pmol of the Cy5-cCal oligo-
nucleotide, in which the degree of labeling with fluorophore was
adjusted to OD260/OD650 ¼ 4.3 by mixing with non-labeled cCal
oligonucleotide, was included in 15 ll hybridization buffer (50%
formamide, 5 · SSC, 0.1% SDS, 10 lg sheared salmon sperm DNA,
(Eppendorf, Westbury, NY, USA). Slides were pre-treated according
to Raghavachari et al. (2003), hybridized at 42�C for 24 h, and washed
once in 2 · SSC, 0.1% SDS at 42�C for 5 min, twice in 1 · SSC for
2 min at room temperature, and three times in 0.2 · SSC for 2 min at
room temperature. After drying by brief centrifugation, slides were
scanned using a GenePix 4000B scanner (Molecular Devices,
Sunnyvale, CA, USA). Images were processed using GENEPIX ver. 6.0
to obtain raw intensity values for each spot. For each of the two
colors, the median value for the background intensity was subtracted
from the value of each pixel. Then the median value of the pixel-by-
pixel ratios of the two-color intensity values (called the median of
ratios by GENEPIX) was used as the raw signal value for each spot.

Data analyses

The raw signal intensity data were processed into the estimated
expression values using a custom Perl script with R (http://www.
r-project.org) as a module for model fitting. The processed data from
multiple arrays were normalized by SBQ using a custom Perl script.
Evaluation of SBQ used the data for three treatments, 24 h after
infection of Pst infection (three replicates), 4 h after treatment with
Flg22 peptide (three replicates), and 48 h after infection of B. cinerea
(two replicates), and the corresponding controls from three experi-
ments in AffyWatch: ‘AtGenExpress: Response to virulent, avirulent,
typeIII-secretion system deficient and nonhost bacteria’, ‘AtGen-
Express: Response to bacterial-(LPS, HrpZ, Flg22) and oomycete-
(NPP1) derived elicitors’ and ‘AtGenExpress: Pathogen series:
Response to Botrytis cinerea infection’, respectively. The evaluation
of SBQ was performed as described in Results and Discussion.

The miniarray data for responses of wild-type, rps2-101C and
ndr1-1 plants to Pst/avrRpt2 infection were normalized together by
SBQ and analysed using SAM (two class-paired) (Tusher et al.,
2001) (http://www-stat.stanford.edu/�tibs/SAM). The PAMPs-
responsive genes were identified using the flg22 and LPS data
from ‘AtGenExpress: Response to bacterial-(LPS, HrpZ, Flg22) and
oomycete-(NPP1) derived elicitors’ and Pst hrcC data from
‘AtGenExpress: Response to virulent, avirulent, typeIII-secretion
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system deficient and nonhost bacteria’ in AffyWatch. The .CEL files
corresponding to the treatments and the appropriate controls in
each experiment were preprocessed using RMAEXPRESS with QN.
The data from a treatment and the corresponding control were
analysed using SAM (two class-paired, FDR ¼ 0.05). For flg22, LPS
and Pst hrcC, genes that showed expression levels significantly
higher than the control at one or more time points were identified.
Then the genes that were identified for at least two of the three
PAMPs sources were defined as the PAMPs-inducible genes (1011
genes). From these 1011 genes, 121 genes that were among the 535
genes common to the miniarray and ATH1 GeneChip were used for
comparison with the ndr1-specific genes.

Affymetrix ATH1 GeneChip experiment

Affymetrix experiments were performed as described in the Af-
fymetrix technical manual. Total RNA (10 lg) was used for cDNA
and cRNA synthesis with the Affymetrix GeneChip One-Cycle Target
Labeling Kit. Hybridizations, washing, staining and scanning were
performed at the University of Minnesota Microarray Facility (Min-
neapolis, MN, USA). RMAEXPRESS using QN was used to extract gene
expression values from .CEL files.

qRT–PCR

qRT–PCR was performed using the Superscript III Platinum SYBR
Green One-Step qRT–PCR kit (Invitrogen) and an Applied Biosys-
tems 7500 Real Time PCR system (Applied Biosystems, Foster city,
CA, USA) with the thermal cycling program: 48�C for 10 min, 50�C
for 2 min, 95�C for 10 min, followed by 40 cycles of 95�C for 15 sec,
60�C for 1 min. Primer sequences used are shown in Table S4.
Actin2 (At3g18780) was used as the internal reference gene. Data
were analysed using the Applied Biosystems SEQUENCE DETECTION

software (ver. 1.2), and normalized transcript levels were calculated
as described (Livak and Schmittgen, 2001). The primer sequences
are shown in Table S4.

Acknowledgements

We thank Zheng Jin Tu and the Minnesota Supercomputing Insti-
tute for access to and assistance with high-performance computers,
Nick Hahn and the High Throughput Analysis Facility at University
of Minnesota for operation of a liquid-handling robot, University of
Minnesota Microarray Facility for hybridization of GeneChip arrays,
Betsy M. Martinez-vaz and Arkady Khodursky for technical advice on
microarray experiments, Hui-Hsien Chou for technical advice on
Picky, Anton A. Sanderfoot for technical advice on DNA purification,
Sanford Weisberg for statistics consulting, Shauna Somerville for
help in selecting genes for the miniarray, Ken Vernick for letting us
use his GenePix 4000B scanner, and Remco van Poecke for critical
reading of the manuscript. This work was supported by a grant from
the National Science Foundation, Arabidopsis 2010, grant number
IBN-0419648, to J.G. and F.K. and a grant from the National Re-
search Initiative of the USDA Cooperative State Research, Education
and Extension Service, grant number 2004-35301-14525, to F.K.
R.M.M. was supported by a National Institutes of Health post-
doctoral fellowship.

Note added in proof: Our suggestion that NDR1 acts through RIN4
is supported by a recent publication documenting physical interac-
tion between these two proteins [Day et al. (2006) NDRI interaction
with RIN4 mediates the differential activation of multiple disease
resistance pathways in Arabidopsis. Plant Cell, 18, 2782–2791]

Supplementary Material

The following supplementary material is available for this article
online:
Table S1 Genes represented by the miniarray
Table S2 Corrected Akaike’s information criterion values for various
models
Table S3 Miniarray expression profile results used in Table 2
Table S4 Primers used for qRT-PCR
Appendix S1 Detailed methods
This material is available as part of the online article from http://
www.blackwell-synergy.com

References

Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L.,

Gomez-Gomez, L., Boller, T., Ausubel, F.M. and Sheen, J. (2002)
MAP kinase signalling cascade in Arabidopsis innate immunity.
Nature, 415, 977–983.

Axtell, M.J. and Staskawicz, B.J. (2003) Initiation of RPS2-specified
disease resistance in Arabidopsis is coupled to the AvrRpt2-
directed elimination of RIN4. Cell, 112, 369–377.

Barczak, A., Rodriguez, M.W., Hanspers, K., Koth, L.L., Tai, Y.C.,

Bolstad, B.M., Speed, T.P. and Erle, D.J. (2003) Spotted long
oligonucleotide arrays for human gene expression analysis.
Genome Res. 13, 1775–1785.

Bent, A.F., Kunkel, B.N., Dahlbeck, D., Brown, K.L., Schmidt, R.,

Giraudat, J., Leung, J. and Staskawicz, B.J. (1994) RPS2 of Ara-
bidopsis thaliana: a leucine-rich repeat class of plant disease
resistance genes. Science, 265, 1856–1860.

Bolstad, B.M., Irizarry, R.A., Astrand, M. and Speed, T.P. (2003) A
comparison of normalization methods for high density oligonu-
cleotide array data based on variance and bias. Bioinformatics,
19, 185–193.

Burnham, K.P. and Anderson, D.R. (2002) Model Selection and
Multimodel Inference: A Practical Information-Theoretic Ap-
proach, 2nd edn. New York: Springer-Verlag.

Century, K.S., Holub, E.B. and Staskawicz, B.J. (1995) NDR1, a locus
of Arabidopsis thaliana that is required for disease resistance to
both a bacterial and a fungal pathogen. Proc. Natl Acad. Sci. USA,
92, 6597–6601.

Chou, H.H., Hsia, A.P., Mooney, D.L. and Schnable, P.S. (2004) Picky:
oligo microarray design for large genomes. Bioinformatics, 20,
2893–2902.

Dudley, A.M., Aach, J., Steffen, M.A. and Church, G.M. (2002)
Measuring absolute expression with microarrays with a calibra-
ted reference sample and an extended signal intensity range.
Proc. Natl Acad. Sci. USA, 99, 7554–7559.

Glazebrook, J., Chen, W., Estes, B., Chang, H.S., Nawrath, C.,

Metraux, J.P., Zhu, T. and Katagiri, F. (2003) Topology of the
network integrating salicylate and jasmonate signal transduction
derived from global expression phenotyping. Plant J. 34, 217–
228.

He, P., Shan, L., Lin, N.C., Martin, G.B., Kemmerling, B., Nurnberger,

T. and Sheen, J. (2006) Specific bacterial suppressors of MAMP
signaling upstream of MAPKKK in Arabidopsis innate immunity.
Cell, 125, 563–575.

Huang, S., Eichler, G., Bar-Yam, Y. and Ingber, D.E. (2005) Cell fates
as high-dimensional attractor states of a complex gene regulatory
network. Phys. Rev. Lett. 94, 128701.

Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng,

J.K., Bumgarner, R., Goodlett, D.R., Aebersold, R. and Hood, L.

(2001) Integrated genomic and proteomic analyses of a system-
atically perturbed metabolic network. Science, 292, 929–934.

576 Masanao Sato et al.

ª 2006 The Authors
Journal compilation ª 2007 Blackwell Publishing Ltd, The Plant Journal, (2007), 49, 565–577



Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis,

K.J., Scherf, U. and Speed, T.P. (2003) Exploration, normalization,
and summaries of high density oligonucleotide array probe level
data. Biostatistics, 4, 249–264.

Iyer, V.R., Eisen, M.B., Ross, D.T. et al. (1999) The transcriptional
program in the response of human fibroblasts to serum. Science,
283, 83–87.

Katagiri, F. and Glazebrook, J. (2003) Local Context Finder (LCF)
reveals multidimensional relationships among mRNA expression
profiles of Arabidopsis responding to pathogen infection. Proc.
Natl Acad. Sci. USA, 100, 10842–10847.

Katagiri, F., Thilmony, R. and He, S.Y. (2002) The Arabidopsis
thaliana–Pseudomonas syringae interaction. In The Arabidopsis
Book (Somerville, C.R. and Meyerowitz, E.M., eds). Rockville, MD,
USA: American Society of Plant Biologists, pp. 1–35. doi:10.1199/
tab.0009, www.aspb.org/publications/arabidopsis/.

Kim, M.G., da Cunha, L., McFall, A.J., Belkhadir, Y., DebRoy, S.,

Dangl, J.L. and Mackey, D. (2005) Two Pseudomonas syringae
type III effectors inhibit RIN4-regulated basal defense in Arabid-
opsis. Cell, 121, 749–759.

Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene
expression data using real-time quantitative PCR and the 2(-Delta
Delta C(T)) Method. Methods, 25, 402–408.

Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R. and Dangl, J.L.

(2003) Arabidopsis RIN4 is a target of the type III virulence effector
AvrRpt2 and modulates RPS2-mediated resistance. Cell, 112, 379–
389.

Mindrinos, M., Katagiri, F., Yu, G.L. and Ausubel, F.M. (1994) The A.
thaliana disease resistance gene RPS2 encodes a protein con-
taining a nucleotide-binding site and leucine-rich repeats. Cell,
78, 1089–1099.

Phillips, J. and Eberwine, J.H. (1996) Antisense RNA amplification: a
linear amplification method for analyzing the mRNA population
from single living cells. Methods, 10, 283–288.

Raghavachari, N., Bao, Y.P., Li, G., Xie, X. and Muller, U.R. (2003)
Reduction of autofluorescence on DNA microarrays and slide
surfaces by treatment with sodium borohydride. Anal. Biochem.
312, 101–105.

Redman, J.C., Haas, B.J., Tanimoto, G. and Town, C.D. (2004)
Development and evaluation of an Arabidopsis whole genome
Affymetrix probe array. Plant J. 38, 545–561.

Schlingemann, J., Habtemichael, N., Ittrich, C., Toedt, G., Kramer,

H., Hambek, M., Knecht, R., Lichter, P., Stauber, R. and Hahn, M.

(2005) Patient-based cross-platform comparison of oligo-
nucleotide microarray expression profiles. Lab. Invest. 85, 1024–
1039.

Stoyanova, R., Upson, J.J., Patriotis, C., Ross, E.A., Henske, E.P.,

Datta, K., Boman, B., Clapper, M.L., Knudson, A.G. and Bellacosa,

A. (2004) Use of RNA amplification in the optimal characterization
of global gene expression using cDNA microarrays. J. Cell
Physiol. 201, 359–365.

Talaat, A.M., Howard, S.T., Hale, W.t., Lyons, R., Garner, H. and

Johnston, S.A. (2002) Genomic DNA standards for gene expres-
sion profiling in Mycobacterium tuberculosis. Nucleic Acids Res.
30, e104.

Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H.S., Han, B., Zhu,

T., Zou, G. and Katagiri, F. (2003) Quantitative nature of Arabid-
opsis responses during compatible and incompatible interactions
with the bacterial pathogen Pseudomonas syringae. Plant Cell,
15, 317–330.

Tusher, V.G., Tibshirani, R. and Chu, G. (2001) Significance analysis
of microarrays applied to the ionizing radiation response. Proc.
Natl Acad. Sci. USA, 98, 5116–5121.

van Wees, S.C., Chang, H.S., Zhu, T. and Glazebrook, J. (2003)
Characterization of the early response of Arabidopsis to Alterna-
ria brassicicola infection using expression profiling. Plant Physiol.
132, 606–617.

Whitham, S.A., Quan, S., Chang, H.S., Cooper, B., Estes, B., Zhu, T.,

Wang, X. and Hou, Y.M. (2003) Diverse RNA viruses elicit the
expression of common sets of genes in susceptible Arabidopsis
thaliana plants. Plant J. 33, 271–283.

Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J. and

Speed, T.P. (2002) Normalization for cDNA microarray data: a
robust composite method addressing single and multiple slide
systematic variation. Nucleic Acids Res. 30, e15.

Yu, G.L., Katagiri, F. and Ausubel, F.M. (1993) Arabidopsis muta-
tions at the RPS2 locus result in loss of resistance to Pseudo-
monas syringae strains expressing the avirulence gene avrRpt2.
Mol. Plant–Microbe Interact. 6, 434–443.

Data depositions

Gene Expression Omnibus accessions: GPL3638, GSE4632, GSM103772, GSM103773, GSM103774, GSM103775, GSE4429, GSM99793,
GSM99794, GSE5308, GSM124754, GSM124755, GSM124756, GSM124757, GSM124758, GSM124759, GSM124760, GSM124761.
GenBank accessions: DQ480366, DQ480367, DQ480368, DQ480369.

High-performance, small-scale microarray 577

ª 2006 The Authors
Journal compilation ª 2007 Blackwell Publishing Ltd, The Plant Journal, (2007), 49, 565–577


	University of Massachusetts Amherst
	From the SelectedWorks of Dong Wang
	February, 2007

	A High-Performance, Small-Scale Microarray for Expression Profiling of Many Samples in Arabidopsis-Pathogen Studies
	A highperformance, smallscale microarray for expression profiling of many samples in Arabidopsispathogen studies

