Skip to main content
Theory of Quasi-Equilibrium Nucelosynthesis and Applications to Matter Expanding from High Temperature and Density
The Astrophysical Journal
  • Bradley S Meyer, Clemson University
  • Tracy D Krishnan, Clemson University
  • Donald D Clayton, Clemson University
Document Type
Publication Date
The American Astronomical Society

Our first purpose is construction of a formal theory of quasi-equilibrium. We define quasi-equilibrium, in its simplest form, as statistical equilibrium in the face of an extra constraint on the nuclear populations. We show that the extra constraint introduces a uniform translation of the chemical potentials for the heavy nuclei and derive the abundances in terms of it. We then generalize this theory to accommodate any number of constraints. For nucleosynthesis, the most important constraint occurs when the total number of heavy nuclei Yh within a system of nuclei differs from the number that would exist in nuclear statistical equilibrium (NSE) under the same conditions of density and temperature. Three situations of high relevance are (1) silicon burning, wherein the total number of nuclei exceeds but asymptotically approaches the NSE number; (2) alpha-rich freezeout expansions of high entropy, wherein Yh is less than the NSE number; and (3) expansions from high temperature of low-entropy matter, in which Yh exceeds the NSE number. These are of importance, respectively, within (1) supernova shells, (2) Type II supernova cores modestly outside the mass cut, and (3) Type Ia supernova cores in near-Chandrasekhar-mass events.

Citation Information
Please use publisher's recommended citation.