Skip to main content
Precondensed Matter: Key to the Early Solar System
Conference on Protostars and Planets
  • Donald D Clayton, Clemson University
Publication Date

Chemical and isotopic anomalies in meteorites may be understandable in terms of the chemical fractionation routinely expected in the interstellar medium (ISM). Dust of distinct composition is idealized as being of three types: (1) thermal supernova condensates (SUNOCONS), (2) thermal condensation during other stellar mass-loss processes (STARDUST), and (3) nonthermal sticking processes in cold nebulae (NEBCONS). Great depletions in ISM of Ca Al Ti are due to SUNOCONS, although STARDUST is about twice as abundant. An abundance table of interstellar SUNOCONS is presented. Parent bodies in the solar system are accumulated directly from the ISM. No hot solar condensation sequence is assumed. Only relatively volatile elements within NEBOCONS are vaporized in the warm solar accretion disk. Variations in the relative amounts of these components during accumulation processes plus subsequent solid chemistry may have produced such chemical anomalies as the meteoritic fractionation patterns and the Ca Al-rich inclusions. Isotopic anomalies result from four processes that selectively site specific isotopes: (1) extinct radioactivities, (2) distinct supernova shells, (3) gas-dust separation, and (4) gas-dust age difference. Planetary accumulation will have been fingerprinted by the chemical state of the ISM if this picture is correct.

Springer Link is the copyright holder of this article. The published version is found here (please note a subscription is required to view this version):
Citation Information
Please use publisher's recommended citation.