Biclustering is a special case of subspace clustering that has become viable in several domains. Particularly, in genomic data analysis, biclustering has been used to identify conditions under which a subset of genes are highly co-expressed, while topological data analysis has been used to analyze disease-specific subgroups, evolution, and disease progression. In this work, we combine biclustering with topological data analysis to achieve the best of both methods. We present TopoBARTMAP - produced by hybridizing BARTMAP, an adaptive resonance theory (ART)-based biclustering method, with TopoART, a topology learning ART network - in order to identify topological associations between biclusters. TopoBARTMAP outperformed both TopoART and BARTMAP in the experimental analysis on six benchmark blood cancer data sets. In some cases, BARTMAP may nevertheless be preferred due to implementation simplicity.
Available at: http://works.bepress.com/donald-wunsch/429/