Skip to main content
Article
Brain-derived neurotrophic factor released from engineered mesenchymal stem cells attenuates glutamate- and hydrogen peroxide-mediated death of staurosporine differentiated RGC-5 cells
Experimental Eye Research
  • Matthew M. Harper, Iowa State University
  • Laura Adamson, Iowa State University
  • Bas Blits, Netherlands Institute for Brain Research
  • Mary Bartlett Bunge, University of Miami School of Medicine
  • Sinisa D. Grozdanic, Iowa State University
  • Donald S. Sakaguchi, Iowa State University
Document Type
Article
Publication Version
Accepted Manuscript
Publication Date
10-1-2009
DOI
10.1016/j.exer.2009.05.013
Abstract

The pupose of this study was to determine the viability of cell-based delivery of brain-derived neurotrophic factor (BDNF) from genetically modified mesenchymal stem cells (MSCs) for neuroprotection of RGC-5 cells. RGC-5 cells were differentiated with the protein kinase inhibitor staurosporine (SS) and exposed to the cellular stressors glutamate or H2O2. As a neuroprotective strategy, these cells were then co-cultured across a membrane insert with mesenchymal stem cells (MSCs) engineered with a lentiviral vector for production of BDNF (BDNF-MSCs). As a positive control, recombinant human BDNF (rhBDNF) was added to stressed RGC-5 cells. After SS differentiation RGC-5s developed neuronal-like morphologies, and a significant increase in the proportion of RGC-5s immunoreactive for TuJ-1 and Brn3a was observed. Differentiated RGC-5s also had prominent TrkB staining, demonstrating expression of the high-affinity BDNF receptor. Treatment of SS differentiated RGC-5s with glutamate or H2O2, produced significant cell death (56.0 ± 7.02 and 48.90 ± 4.58% of control cells, respectively) compared to carrier-solution treated cells. BDNF-delivery from MSCs preserved more RGC-5 cells after treatment with glutamate (80.0 ± 5.40% cells remaining) than control GFP expressing MSCs (GFP-MSCs, 57.29 ± 1.89%, p < 0.01). BDNF-MSCs also protected more RGC-5s after treatment with H2O2 (65.6 ± 3.47%) than GFPMSCs (46.0 ± 4.20%, p < 0.01). We have shown survival of differentiated RGC-5s is reduced by the cellular stressors glutamate and H2O2. Additionally, our results demonstrate that genetically modified BDNF-producing MSCs can enhance survival of stressed RGC-5 cells and therefore, may be effective vehicles to deliver BDNF to retinal ganglion cells affected by disease.

Comments

This is a manuscript from Experimental Eye Research 89 (2009): 538, doi: 10.1016/j.exer.2009.05.013. Posted with permission.

Copyright Owner
Elsevier Ltd
Language
en
File Format
application/pdf
Citation Information
Matthew M. Harper, Laura Adamson, Bas Blits, Mary Bartlett Bunge, et al.. "Brain-derived neurotrophic factor released from engineered mesenchymal stem cells attenuates glutamate- and hydrogen peroxide-mediated death of staurosporine differentiated RGC-5 cells" Experimental Eye Research Vol. 89 Iss. 4 (2009) p. 538 - 548
Available at: http://works.bepress.com/donald-sakaguchi/17/