Skip to main content
Other
DNA Immobilization on GaP(100) Investigated by Kelvin Probe Force Microscopy
Birck and NCN Publications
  • David Richards, Purdue University
  • Dmitry Zemlyanov, Purdue University
  • Rafay Asrar, Purdue University - Main Campus
  • Yena Chokshi, Purdue University - Main Campus
  • Emily M Cook, Purdue University - Main Campus
  • Thomas Hinton, Purdue University - Main Campus
  • Xinran Lu, Purdue University - Main Campus
  • Viet Nguyen, Purdue University - Main Campus
  • Neil Patel, Purdue University - Main Campus
  • Jonathan Usher, Purdue University - Main Campus
  • Sriram Vaidyanathan, Purdue University - Main Campus
  • David Yeung, Purdue University - Main Campus
  • Albena Ivanisevic, Birck Nanotechnology Center, Purdue University
Abstract
Understanding changes in the properties of semiconductor materials after immobilization of biomolecules on the surface is essential for the fabrication of well-tuned and programmable devices. The work examines changes in the properties of gallium phosphide (GaP) after modification with an organic linker, a single stranded DNA, and its complementary strand. We investigated changes in surface potential with Kelvin probe force microscopy (KPFM). Analysis revealed that a more ordered adlayer of ssDNA was present when a lower concentration of linker molecule was used. KPFM data combined with coverage data obtained from X-ray photoelectron spectroscopy (XPS) further confirmed this result. Successful hybridization with the complementary strand was confirmed by both KPFM and Raman spectroscopy. The results indicate that one can control the amount of DNA on the surface by changing the initial concentration of the organic linker, and thus modulate the surface potential of the semiconductor material.
Keywords
  • LABEL-FREE DETECTION; NUCLEIC-ACID; SURFACE; HYBRIDIZATION; MONOLAYERS; PROTEIN; GOLD; SEMICONDUCTORS; NANOWIRES; SUBSTRATE
Date of this Version
9-1-2010
Citation
DOI: 10.1021/jp105927t
Citation Information
David Richards, Dmitry Zemlyanov, Rafay Asrar, Yena Chokshi, et al.. "DNA Immobilization on GaP(100) Investigated by Kelvin Probe Force Microscopy" (2010)
Available at: http://works.bepress.com/dmitry_zemlyanov/20/