Comparison of Conventional and Chilled Aeration of Grains Under Texas Conditions

Dirk E. Maier, Purdue University
Rosana G. Moreira, Texas A&M University
Fred W. Bakker-Arkema, Michigan State University

Available at: https://works.bepress.com/dirk-maier/3/
COMPARISON OF CONVENTIONAL AND CHILLED AERATION OF GRAINS UNDER TEXAS CONDITIONS

D. E. Maier, R. G. Moreira, F. W. Bakker-Arkema

MEMBER MEMBER MEMBER
ASAE ASAE ASAE

ABSTRACT
Conventional and chilled aeration of rice and corn were investigated for Texas conditions using the simulation model AERATE. Of four conventional aeration strategies, continuous aeration performed best since it results in the smallest moisture losses and moisture gradients in the commercial rice and corn silos investigated. Chilled aeration utilizes a refrigeration system to control the bin inlet air conditions. It is able to prevent moisture losses and to maintain the average grain temperatures 15° C (25° F) below that of conventionally-aerated rice and corn during the summer months. KEYWORDS. Ambient aeration, Grain chilling, Grain quality.

INTRODUCTION
Grain quality has become an important issue in the grain trade worldwide due to increased export competition, more stringent food-safety demands, and more precise grain-buyer quality awareness. The application of grain chilling permits both short- and long-term storage of grain regardless of the ambient conditions. The chilled aeration of grain storages has been successfully practiced in over 50 countries for the past 30 years. Annually, over 25 million metric tonnes (1 billion bu) of grain are cooled with grain chilling systems (Brunner, 1990). Commonly, grain is cooled using conventional aeration systems which lower the grain temperature in the storage bin to several degrees above the minimum ambient temperature. Grain chilling is defined as the cooling of grain to below the minimum ambient temperature using a mechanical refrigeration system.

Figure 1 illustrates the grain chilling process. In a mobile grain chilling system, ambient air is ducted over a bank of refrigeration coils in order to decrease its temperature. In this process, the relative humidity of the air is increased. The chilled air temperature is set by the operator. Since grain absorbs moisture at high humidity levels, the chilled air is slightly reheated in the condenser, and if necessary, by built-in electrical resistance heaters to the desired 60-75% relative humidity range. The ability to control the bin-inlet air temperature and humidity to the desired values, regardless of the ambient conditions, is a distinctive feature of a well-designed grain chilling unit. (The specifications of a typical grain chiller are given in Table 1.) After the initial cool-down, a rechilling cycle is run periodically in order to maintain the grain at the desired temperature.

This article explores the need of chilled aeration of grains in Texas and compares it to several conventional in-bin aeration strategies. The systems are investigated for the corn and rice crops harvested in late July for the years 1988-1990.

LITERATURE REVIEW
Commercial grain chilling units were manufactured in Western Europe as early as 1958 to help preserve wet grain after harvest in Germany (Escher Wyss, 1960). At the time, the increased utilization of combine harvesters necessitated an alternative method to preserve freshly harvested grain due to the limited capacity of the available drying equipment. McCune et al. (1963) were among the first to publish studies on grain chilling. They successfully stored sorghum grain at 19% w.b. moisture in Texas for six months at 10° C (50° F). Heidt and Bolling (1965) pursued the effective chilling and storage of harvest-wet wheat and and
moisture was chilled and stored for 10 days.

Wheat with a 20% moisture content was successfully employed to provide temporary storage until the grain moisture wheat rapidly to about 4° C (40° F) in a 10.5 m (41° F). Navarro et al. (1973) slowly chilled 12% moisture (34 ft) high metal bin, and successfully stored it under UK conditions for a period of three months with one rechilling treatment after two months. Chilling was required because the ambient temperatures were too high (14-15%) moisture grain at European conditions - i.e., low (14-15%) moisture grain at 5-8° C (41-46° F), and high (> 22%) moisture grain at 4-5° C (40-41° F). In each moisture range, chilled storage required less energy than traditional storage technologies. Bakker-Arkema et al. (1989) investigated the effect of airflow rate and of grain moisture content/temperature on the chilling rate and moisture loss during the initial cool-down of a bin of corn in a temperate climate; a simulation model was developed for the chilling process. Maier et al. (1989) stored 18% moisture maize for seven months at 4-6° C (40-43° F) in the midwestern United States using a commercial chilling unit. A capital budgeting analysis showed positive cashflows for several economic scenarios.

The chilling of rice has been used in the rice industries of Spain and Italy for several years (Brunner, 1989 and Finassi, 1987). Improvements in the milling quality of rice through a 20% increase in head yield have been reported (Rius, 1987). Combining chilled aeration with the drying of paddy in Malaysia increased dryer capacity by 40% (Chek, 1989). In the U. S. rice industry grain chilling technology is being considered in the handling of brown rice and the conditioning of parboiled rice (Brunner, 1990).

If ambient aeration is used in warm climates, the grain temperatures will remain at high temperatures for extended time periods, resulting in insect-infestation of the grains (Nour et al., 1988). Thus, grain storage in the climate of the southern United States requires chemical insect control even when aeration is practiced. Chilled aeration storage provides the opportunity to store grains safely in the southwest while potentially reducing the use of chemical protectants. Furthermore, the lower the temperatures in the storage, the longer the half-life of the chemical protectant (Thorpe and Elder, 1982).

**AERATE**

An in-depth analysis of in-store aeration can be made with a fixed-bed drying model (Bakker-Arkema, 1984). Although the partial differential equation model is considered to be more accurate than the heat and mass balance model (Parry, 1985), it requires excessive computer time when long time periods are simulated. Since the aeration of bulk grain is practiced at low airflows, the cool-down time is extensive, on the order of 100-250 hours. Therefore, the aeration simulation model chosen in this study is of the heat and mass balance type, with equilibrium assumed between the grain and air temperatures and humidities. The aeration model is called AERATE and was developed by Michl (1983); modifications to the Michl model have been made by Muhlbauer (1987) and Maier (1988). The Michl model is a modified version of the equilibrium-type fixed-bed grain drying model of Thompson (1972).

The AERATE program requires information about the desired aeration strategy, the ambient conditions, the bin configuration, and the grain being dried/cooled. The simulation of conventional aeration is accomplished by using historic weather data. The hourly temperature and relative humidity values are needed along with the local barometric pressure. The other moist air parameters are calculated with the help of the built-in psychrometric subroutines. In this study, actual weather data for the coastal region of Texas (where most rice and corn are produced) was used.

In the chilled aeration operation, it is assumed that the inlet air temperature and relative humidity are supplied by a grain chilling unit independent of the ambient conditions.

---

**TABLE 1. Typical design and operating specifications of a commercial grain-chilling unit**

<table>
<thead>
<tr>
<th>Cooling capacity</th>
<th>tonnes/day</th>
<th>bu/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum</td>
<td>500</td>
<td>17,700</td>
</tr>
<tr>
<td>average</td>
<td>330-340</td>
<td>11,600-12,000</td>
</tr>
</tbody>
</table>

| Cold air flowrate | at 100 mm W. G. (4 in.) | 18,000 m³/h | 10,600 cfm |
|                  | at 300 mm W. G. (12 in.) | 14,200 m³/h | 8,400 cfm |

| Compressor cooling load | at 30° C (86° F) condensing and 0° C (32° F) evaporating temperature | 107.0 kW | 365,200 Btu/h |

| Connected loads | compressor | 23.2 kW | 17.3 Hp |
|                | cold air fan | 22.0 kW | 16.4 Hp |
|                | condenser fan | 4 x 2.2 kW | 4 x 1.6 Hp |
|                | total connected load | 54.0 kW | 40.3 Hp |

* KK400 manufactured by Sulzer-Escher Wyss, Lindau, Germany.
The cooling air flow rate, temperature, and relative humidity to the grain pile are fixed at the bin inlet. The typical operation of a commercial grain chiller is shown in figure 2 during a five-day early summer period in the midwestern United States. The ambient temperature varied between 10°C (50°F) and 28°C (82°F) but the chilled-air temperature remained between 6°C (43°F) and 7°C (45°F). Likewise, the relative humidity of the chilled air remained practically constant at 90 ± 2%, although the ambient air humidity ranged from 25 to 98%. The curves show that a grain chiller is able to maintain constant air conditions into a storage bin regardless of the ambient temperature and relative humidity.

PROCEDURE

In order to assess the advantage of the use of grain chillers in Texas, the storage of rough rice and food corn in the Corpus Christi area was considered. Simulation was employed to analyze conventional and chilled aeration at two commercial food-grain elevators. One company stores rice, the other corn. The rice is stored in 60 concrete silos with a holding capacity of 91 tonnes [2,000 hundredweights (cwt)] each; the silo diameter is 3.7 m (12.2 ft) and the fill depth is 15.3 m (50.3 ft). The corn is stored in 36 concrete silos with a holding capacity of 1200 tonnes (45,000 bu) each; the silo diameter is 9.1 m (30 ft) and the fill depth is 23.8 m (78.3 ft). The rice and corn are harvested in late July, dried (if needed) to about 13% (w.b.), and reach the silos at approximately 38°C (100°F). In order to cool the rice and corn, the bins are aerated. Different aeration schedules are used by Texas grain-storage managers. Their principal aim is to cool the grain to below 15°C (60°F) as rapidly as possible without excessive overdrying or absorption of excessive moisture by the bottom grain layers in the silo. In addition, it is undesirable to develop a large moisture gradient in the silo.

Four aeration strategies are investigated using ambient air at a flow rate of 0.1 m³/min/tonne (0.1 cfm/bu): (1) continuous aeration, (2) aeration whenever the relative humidity of the ambient air is below 75%, (3) aeration between 10 A.M. and 4 P.M., and (4) aeration between 10 P.M. and 4 A.M. For each of the two elevators (i.e., corn and rice), the grain temperatures and moisture contents in the silos are calculated during the warmest storage months (i.e., August, September, and October) over a three-year period (i.e., 1988-1990). AERATE is employed in the calculations using actual weather conditions recorded every three hours (NOAA, 1988, 1989, 1990).

The chilling of the grain is also simulated with AERATE. The aeration simulation program utilizes the weather data in conjunction with a commercial chilling unit (see Table 1) in which the ambient air is cooled and dehumidified to a temperature of 15°C (60°F) with a relative humidity of 58% for corn and 63% for rice. The airflow rate during chilled aeration is also 0.1 m³/min/tonne (0.1 cfm/bu). The grains are assumed to be rechilled intermittently to maintain the chilled storage conditions.

RESULTS AND DISCUSSION

REGULAR AERATION

The weather conditions for August-October 1988 in Corpus Christi, Texas, are plotted in figure 3. The average temperature is 26.3°C (79.3°F) with a range from 13.3 to 38.9°C (55.9 to 102°F). The average relative humidity is 75.5% with a range from 27.0 to 100%. The 28-year average temperatures (i.e., 1962-1989) for August are 28.6°C (83.5°F), for September 27.0°C (80.6°F), and for October 23.3°C (73.9°F).

The optimum moisture content for storing rice and corn in Texas is 12.5-13.0% (w.b.) and 13.0-14.0% (w.b.), respectively. In figure 4, the equilibrium moisture content (EMC) curves of rice and corn are drawn at 26.3°C (79.3°F), the 28-year average summer temperature in Corpus Christi. At 26.3°C (79.3°F) and 13.0% moisture, the equilibrium relative humidity (ERH) for rice is about
70%; and for corn at the same temperature and 14.0% moisture the ERH-value is about the same. At 15°C (59°F), the ERH-values for rice and corn are approximately 65% for moisture contents of 13 and 14%, respectively.

There is little difference in the stored grain temperatures, at least not in the 1988-1990 period. This is shown in figures 5 and 6 for the case of continuous aeration of rice. In 1990 the rice remained above 30°C (86°F) for a longer period of time early in the storage season, but cooled off quicker in October. The average rice temperatures and moistures in the silos were similar, ranging in average temperature from 27 to 28°C (80 to 82°F) and in average moisture from 12.6 to 12.8% w.b. Since there is little variation from year to year, the rest of the results will be presented only for 1988.

Figures 6 through 9 show the moisture content and temperature of the rice at the bottom and at the top of the silo, along with the average values during the 1 August - 31 October 1988 storage period for the four aeration strategies. Since similar information was obtained for corn as for rice (Tables 2 and 3), only the case for continuous aeration of corn is illustrated (fig. 10).

The following observations are made from figures 6 through 10 for the aeration of rice and corn during summer conditions in Texas:

- Rice and corn react similarly to aeration – the average grain moistures in the silo remain at 12.5 ± 0.5% w.b., and the average grain temperatures for the summer are at 28 ± 2°C (82 ± 3°F).
- Continuous aeration results in less overdrying of the rice and corn in the bottom layers of the silos, in the lowest average grain temperatures (except for the 10 P.M. - 4 A.M. case), and has the smallest differentials in moisture content. Thus, it is the recommended strategy of aeration among the four
Table 2. Average grain temperatures, moisture contents,
and ranges for the regular and chilled aeration of rice
in Texas between August and October 1988

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Temperature (°C)</th>
<th>Moisture (% w. b.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Range</td>
</tr>
<tr>
<td>Continuous</td>
<td>27.8</td>
<td>21.1 - 37.8</td>
</tr>
<tr>
<td>Less than 75% RH</td>
<td>29.3</td>
<td>24.0 - 37.8</td>
</tr>
<tr>
<td>10 A.M. - 4 P.M.</td>
<td>29.3</td>
<td>24.7 - 37.8</td>
</tr>
<tr>
<td>10 P.M. - 4 A.M.</td>
<td>26.9</td>
<td>21.0 - 37.8</td>
</tr>
<tr>
<td>Chilled*</td>
<td>15.2</td>
<td>15.0 - 15.5</td>
</tr>
</tbody>
</table>

* After 124 hours of chilling.

Chilled Aeration

The results in figures 6 through 10 contrast sharply with those in figures 11 and 12, in which chilled aeration with constant air-inlet conditions for rice and corn are used, respectively.

The rice in the silo is cooled to below 25° C (77° F) within 54 hours, and below 15.5° C (60° F) within 124 hours (fig. 11). Due to the evaporative cooling effect, the initial rice moisture content can be as high as 13.8% w.b. to achieve a final average moisture content of about 13.0% at the end of the cool-down period. The moisture content of the entire pile is within 0.1 percentage points. The final temperature gradient between the bottom and top layers is less than 0.5 C (1° F).

The cool-down of the larger-sized corn silo to below 15.5° C (60° F) is completed in 154 hours, the corn temperature drops below 25° C within 66 hours of chilling. The moisture content of the corn is about 13.0% at the end of the cool-down period. The moisture content differential between the bottom and top layers is less than 0.1 percentage points and the final temperature gradient less than 0.5 K (1° F).

It is noted that depending on the capacity of the commercial grain chilling unit, multiple silos can be chilled at the same time when appropriate aeration ducting is used. Most importantly, at 15.5° C (60° F) and 12.5-13.0% moisture, the rice and corn can be stored indefinitely in Texas with a significant reduction in the risk of insect infestation (Baur, 1984).

A question still to be considered in the analysis of chilled grain aeration and storage is the need and frequency of rechilling. Bulk-stored grain is subject to rewarming due to the effects of ambient weather conditions which are severe in Texas. The recent development of a systems
model for the chilled aeration and storage of cereal grains will allow analysis of this question (Maier, 1992).

The economic benefits of grain chilling should surpass the costs. Thus, the income derived from the improved quality of chill-stored grain should offset the investment cost of a grain chilling system. Maier et al. (1989) made a capital-budgeting analysis of the application of grain chilling in the United States. Savings accrued due to savings in (a) drying costs, (b) weightloss shrinkage, and (c) quality-deterioration discount. Under current U. S. economic conditions, the installation of a grain chiller appeared economical (i.e., the cashflows were positive). In Texas additional savings can accrue due to a reduction in the need for insecticides and fumigants. Due to the increased interest in grains grown organically, the only effective chemical-free storage technology is chilled aeration. Furthermore, at food-grade quality premiums of up to 75¢ for yellow and $1 for white corn above market prices, chilled aeration is an economic incentive for growers in Texas, especially considering the potential of up to 10% in estimated losses during food-corn storage. Rice is very sensitive to a reduction in head yield due to over- and underdrying. A market price of $16/cwt for milled parboiled rice makes chilled-aeration storage an attractive technology for both the quality preservation of stored rough rice and the conditioning of parboiled rice.

CONCLUSIONS

Based on the results of this study, the following conclusions are drawn for the conventional and chilled aeration of grains under Texas conditions:

Aeration of rough rice and food corn during the summer months (August-October) cannot lower the average grain temperature below 28°C (82°F).

Continuous aeration results in minimum overdrying of rice and corn in the bottom layers of a silo.

Time-clock and upper-limit relative humidity control of regular aeration leads to the partial overdrying or underdrying of grain in a silo.

Chilled aeration with properly-sized equipment is able to lower the rice and corn temperatures in commercial silos filled during the summer time to below 15.5°C (60°F) within a 120-160 h period.

Chilled aeration is able to permanently maintain the moisture content of silo-stored rice and corn uniformly at 13% (w.b.).

REFERENCES


