Skip to main content
Article
Cellular basis for the negative dromotropic effect of adenosine on rabbit single atrioventricular nodal cells.
Circulation research
  • Desuo Wang, Philadelphia College of Osteopathic Medicine
  • John C. Shryock
  • Luiz Belardinelli
Document Type
Article
Publication Date
4-1-1996
Abstract

The effects of adenosine on action potentials, rate-dependent activation failure (the cellular basis for second-degree atrioventricular [AV] block), and the recovery of excitability in rabbit isolated single AV nodal cells were studied using the whole-cell patch-clamp technique. Adenosine (1 micromol/L) shortened the duration, depressed the amplitude, and reduced the rate of rise of the AV nodal cell action potential. Adenosine (10 micromol/L) caused a significant hyperpolarization (7 +/- 1 mV) of AV nodal cells. Adenosine increased the occurrence and the rate dependence of activation failure (Wenckebach periodicity) of AV nodal cells: this effect was concentration dependent and mediated by A1 adenosine receptors. The rate-dependent activation failure caused by adenosine was associated with a prolongation of the effective refractory period by 18 +/- 2 ms (P < .05), an increase in the duration of activation delay, and an elevation (from 0.22 +/- 0.04 to 0.30 +/- 0.03 nA, P < .05) of the threshold current amplitude required to activate AV nodal cells. The results suggest that the slowed recovery of excitability of AV nodal cells caused by adenosine forms the cellular basis for adenosine-induced second-degree AV block. Adenosine decreased ICa,L and activated IK,ADO of AV nodal cells. These actions of adenosine on ion currents may contribute to the effect of this nucleoside to depress excitability of AV nodal cells. The enhancement by adenosine of rate-dependent activation failure of AV nodal cells implies that the negative dromotropic effect of adenosine should be more pronounced during an episode of supraventricular tachycardia than during normal rhythm.

Comments

This article was published in Circulation Research, Volume 78, Issue 4, April 1996.

The published version is available at http://dx.doi.org/10.1161/01.RES.78.4.697

Copyright © 1996 American Heart Association

Citation Information
Desuo Wang, John C. Shryock and Luiz Belardinelli. "Cellular basis for the negative dromotropic effect of adenosine on rabbit single atrioventricular nodal cells." Circulation research Vol. 78 Iss. 4 (1996) p. 697 - 706
Available at: http://works.bepress.com/desuo_wang/14/