Skip to main content
Article
Molecular Analysis of the In Situ Growth Rate of Subsurface Geobacter Species
Applied and Environmental Microbiology (2012)
  • Dawn E. Holmes
  • Ludovic Giloteaux
  • Melissa Barlett
  • Milind A. Chavan
  • Jessica A. Smith, University of Massachusetts - Amherst
  • Kenneth H. Williams
  • Michael Wilkins
  • Philip Long
  • Derek Lovley, University of Massachusetts - Amherst
Abstract

Molecular tools that can provide an estimate of the in situ growth rate of Geobacter species could improve understanding of dissimilatory metal reduction in a diversity of environments. Whole genome microarray analyses of the subsurface isolate, Geobacter uraniireducens, grown under a variety of conditions identified a number of genes that are differentially expressed at different specific growth rates. Expression of two genes encoding ribosomal proteins, rpsC and rplL, were further evaluated with quantitative reverse transcription PCR (qRT-PCR) in cells with doubling times ranging from 6.56 h to 89.28 h. Transcript abundance of rpsC correlated best (r2= 0.90) with specific growth rates. Therefore, expression patterns of rpsC were used to estimate specific growth rates of Geobacter species during an in situ uranium bioremediation field experiment in which acetate was added to the groundwater to promote dissimilatory metal reduction. Initially, increased availability of acetate in the groundwater resulted in higher expression of Geobacter rpsC and the increase in the number of Geobacter cells estimated with fluorescent in situ hybridization compared well with specific growth rates estimated from levels of in situ rpsC expression. However, in later phases cell number increases were substantially lower than predicted from rpsC transcript abundance. This change coincided with a bloom of protozoa and increased attachment of Geobacter species to solid phases. These results suggest that monitoring rpsC expression may better reflect the actual rate that Geobacter species are metabolizing and growing during in situ uranium bioremediation than changes in cell abundance.

Disciplines
Publication Date
December 28, 2012
Publisher Statement
DOI: 10.1128/​AEM.03263-12
Citation Information
Dawn E. Holmes, Ludovic Giloteaux, Melissa Barlett, Milind A. Chavan, et al.. "Molecular Analysis of the In Situ Growth Rate of Subsurface Geobacter Species" Applied and Environmental Microbiology (2012)
Available at: http://works.bepress.com/derek_lovley/365/