Growth of Thermophilic and Hyperthermophilic Fe(III)-Reducing Microorganisms on a Ferruginous Smectite as the Sole Electron Acceptor

Derek Lovley, University of Massachusetts - Amherst
Kazem Kashefi
Evgenya S Shelobolina
W. Crawford Elliott

Available at: http://works.bepress.com/derek_lovley/100/
Growth of Thermophilic and Hyperthermophilic Fe(III)-Reducing Microorganisms on a Ferruginous Smectite as the Sole Electron Acceptor

Kazem Kashefi, Evgenya S. Shelobolina, W. Crawford Elliott and Derek R. Lovley

Published Ahead of Print 2 November 2007.

Updated information and services can be found at:
http://aem.asm.org/content/74/1/251

These include:

REFERENCES
This article cites 53 articles, 28 of which can be accessed free at: http://aem.asm.org/content/74/1/251#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Growth of Thermophilic and Hyperthermophilic Fe(III)-Reducing Microorganisms on a Ferruginous Smectite as the Sole Electron Acceptor\(^V\)

Kazem Kashefi, 1* Evgenya S. Shelobolina, 2 W. Crawford Elliott, 3 and Derek R. Lovley 4

Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 488241; Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 537062; Department of Geosciences, Georgia State University, P.O. Box 4105, Atlanta, Georgia 30302-41053; and Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 010034

Received 11 July 2007/Accepted 26 October 2007

Recent studies have suggested that the structural Fe(III) within phyllosilicate minerals, including smectite and illite, is an important electron acceptor for Fe(III)-reducing microorganisms in sedimentary environments at moderate temperatures. The reduction of structural Fe(III) by thermophiles, however, has not previously been described. A wide range of thermophilic and hyperthermophilic Archaea and Bacteria from marine and freshwater environments that are known to reduce poorly crystalline Fe(III) oxides were tested for their ability to reduce structural (octahedrally coordinated) Fe(III) in smectite (SWa-1) as the sole electron acceptor. Two of the 10 organisms tested, Geoglobus ahangari and Geothermobacterium ferrireducens, were not able to conserve energy to support growth by reduction of Fe(III) in SWa-1 despite the fact that both organisms were originally isolated with solid-phase Fe(III) as the electron acceptor. The other organisms tested were able to grow on SWa-1 and reduced 6.3 to 15.1% of the Fe(III). This is 20 to 50% less than the reported amounts of Fe(III) reduced in the same smectite (SWa-1) by mesophilic Fe(III) reducers. Two organisms, Geothermobacter ehrlichii and archaeal strain 140, produced copious amounts of an exopolysaccharide material, which may have had an active role in the dissolution of the structural iron in SWa-1 smectite. The reduction of structural Fe(III) in SWa-1 by archaeal strain 140 was studied in detail. Microbial Fe(III) reduction was accompanied by an increase in interlayer and octahedral charges and some incorporation of potassium and magnesium into the smectite structure. However, these changes in the major element chemistry of SWa-1 smectite did not result in the formation of an illite-like structure, as reported for a mesophilic Fe(III) reducer. These results suggest that thermophilic Fe(III)-reducing organisms differ in their ability to reduce and solubilize structural Fe(III) in SWa-1 smectite and that SWa-1 is not easily transformed to illite by these organisms.

Dissimilatory Fe(III) reduction has an important influence on the geochemistry of both moderate-temperature (8 to 42°C) and hot (42 to 121°C) environments (27, 28). In freshwater and marine sediments and submerged soils, mesophilic Fe(III)-reducing organisms are responsible for the anaerobic oxidation of a substantial portion of organic carbon and often play an important role in the bioremediation of organic and metal contaminants at moderate temperatures (26). In hot anaerobic environments, such as the deep continental subsurface and in marine and terrestrial hydrothermal zones, hyperthermophilic microorganisms can oxidize hydrogen and metabolize short- and long-chain organic acids and aromatic compounds to carbon dioxide by using Fe(III) as the electron acceptor (12, 14, 18, 27, 53, 54). All hyperthermophiles available in pure culture that have been tested to date can reduce Fe(III), suggesting that the ability to reduce Fe(III) is a highly conserved characteristic of hyperthermophilic microorganisms (12–18, 27, 29, 53, 56).

Recent studies suggest that the two main sources of Fe(III) in sedimentary environments are ferricydride and Fe(III)-bearing phyllosilicates including the iron-rich smectite SWa-1 (hereinafter SWa-1) (28, 51). The addition of both ferrihydrite and SWa-1 (31, 33, 46) to methanogenic sediments promotes the activity of indigenous Fe(III)-reducing microorganisms and switches the terminal electron-accepting process in these sediments from methane production to Fe(III) reduction. Fe(III) hydroxides have been the focus of most studies of microbial Fe(III) reduction (26), and the importance of Fe(III)-bearing phyllosilicates for Fe(III) respiration has only recently been recognized (28, 51). Thus far, structural Fe(III) reduction has been tested only in mesophilic microorganisms (4, 6, 7, 21, 23, 25, 45, 47, 50, 58).

Here, we report on the potential for the microbial reduction of structural Fe(III) in SWa-1 by various thermophilic and hyperthermophilic Archaea and Bacteria, originally isolated with Fe(III) oxide as the terminal electron acceptor, from a variety of hot environments. The results suggest that phyllosilicates can serve as an electron acceptor for the growth of Fe(III)-reducing microorganisms in sedimentary environments at elevated temperatures. However, the conversion of smectite to illite as previously reported for the mesophilic Shewanella oneidensis (19) was not observed.

MATERIALS AND METHODS

Sources of organisms and culture conditions. The microbial strains used in this study are listed in Table 1. They were originally enriched and isolated with poorly crystalline Fe(III) oxide (30) as the sole electron acceptor, from a wide...
variety of hydrothermal environments. Strict anaerobic culturing techniques were used throughout (1, 37). Gases were passed through a column of hot copper filings to remove traces of oxygen. Strain 121 (16); strains 136, 139, 140, 296, 297, and 301 and Geothermobacter ehrlichii (13); and Geoglobus ahangari (18) were grown in modified marine enrichment medium (18), supplemented with the following (per liter): Difco yeast extract, 0.10 g; Na₂SeO₄, 0.02 g; vitamin mixture (32), 10 ml; trace mineral solution (41), 10 ml.

Geothermobacterium ferrireducens was grown in freshwater enrichment medium (15) containing the following components (per liter): poorly crystalline Fe(III) oxide, 100 mmol/liter; MgCl₂·6H₂O, 0.33 g; CaCl₂·2H₂O, 0.33 g; KCl, 0.33 g; KH₂PO₄, 0.33 g.

TABLE 1. Organisms used in this study

<table>
<thead>
<tr>
<th>Strain (other designations)</th>
<th>Name</th>
<th>Lineage</th>
<th>Freshwater (FW) or marine (M)</th>
<th>Source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW1a (JCM 12379 = ATCC BAA-426)</td>
<td>Geothermobacterium ferrireducens</td>
<td>Bacteria, Thermodesulfobacteria, Geothermobacterium</td>
<td>FW</td>
<td>Sediment from Obsidian Pool in Yellowstone National Park, WY</td>
<td>15</td>
</tr>
<tr>
<td>SS015 (JCM 12418 = ATCC BAA-635 = DSM 15274)</td>
<td>Geothermobacter ehrlichii</td>
<td>Bacteria, Deltaproteobacteria, Geobacteraceae, Geothermobacter</td>
<td>M</td>
<td>Diffuse-flow vent fluid from the deep-sea hydrothermal chimney called Bag City in the Pacific Ocean (46°N, 130°W)</td>
<td>13</td>
</tr>
<tr>
<td>234 (JCM 12378 = ATCC BAA-426)</td>
<td>Geoglobus ahangari</td>
<td>Archaea, Euryarchaeota, Archaeoglobaceae, Geoglobus</td>
<td>M</td>
<td>Hydrothermal chimney at Guaymas Basin (27°N, 111°W), in the Pacific Ocean at the depth of 2,000 m</td>
<td>18</td>
</tr>
<tr>
<td>136</td>
<td>Geogemma pacifica</td>
<td>Archaea, Crenarchaeota, Desulfurococcales, Pyrodictiaceae, Geogemma</td>
<td>M</td>
<td>Sulfide rock from an active hydrothermal vent sulfide chimney called Godzilla in the Pacific Ocean (47°N, 120°W)</td>
<td>Unpublished data</td>
</tr>
<tr>
<td>139</td>
<td>Ferroglobus pacificus</td>
<td>Archaea, Euryarchaeota, Archaeoglobaceae, Ferroglobus</td>
<td>M</td>
<td>Sulfide rock from an active hydrothermal vent sulfide chimney called Godzilla in the Pacific Ocean (47°N, 120°W)</td>
<td>Unpublished data</td>
</tr>
<tr>
<td>140</td>
<td>Archaea, Euryarchaeota, Archaeoglobaceae</td>
<td>M</td>
<td>Sulfide rock from an active hydrothermal vent sulfide chimney called Godzilla in the Pacific Ocean (47°N, 120°W)</td>
<td>Unpublished data</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Geogemma barossii</td>
<td>Archaea, Crenarchaeota, Desulfurococcales, Pyrodictiaceae, Geogemma</td>
<td>M</td>
<td>Vent fluid from an active hydrothermal sulfide chimney called Finn in the Pacific Ocean (47°N, 120°W)</td>
<td>16</td>
</tr>
<tr>
<td>296</td>
<td>Geogemma indica</td>
<td>Archaea, Crenarchaeota, Desulfurococcales, Pyrodictiaceae, Geogemma</td>
<td>M</td>
<td>Sulfide rock samples collected from the Kairei hydrothermal vent field, located along the Central Indian Ridge (25°S, 70°E) in the Indian Ocean</td>
<td>Unpublished data</td>
</tr>
<tr>
<td>297</td>
<td>Ferroglobus indicus</td>
<td>Archaea, Euryarchaeota, Archaeoglobaceae, Ferroglobus</td>
<td>M</td>
<td>Sulfide rock samples collected from the Kairei hydrothermal vent field, located along the Central Indian Ridge (25°S, 70°E) in the Indian Ocean</td>
<td>Unpublished data</td>
</tr>
<tr>
<td>301</td>
<td>Archaea</td>
<td>M</td>
<td>Sulfide rock samples collected from the Edmonds vent field located along the Central Indian Ridge (23°S, 69°E) in the Indian Ocean</td>
<td>Unpublished data</td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from http://aem.asm.org on March 14, 2013 by Univ of Massachusetts Amherst
TABLE 2. Results of structural Fe(III) reduction by thermophilic and hyperthermophilic Fe(III)-reducing organisms in the third successive 10% transfer

<table>
<thead>
<tr>
<th>Strain</th>
<th>Growth temp (°C)</th>
<th>Structural Fe(III) reduced</th>
<th>Iron released into solution (mmol/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concn (mmol/liter)</td>
<td>% of initial structural Fe(III)</td>
<td>Fe(II)</td>
</tr>
<tr>
<td>FW-1a</td>
<td>85</td>
<td>0.00 ± 0.03</td>
<td>0</td>
</tr>
<tr>
<td>SS015</td>
<td>55</td>
<td>0.83 ± 0.07</td>
<td>9.0</td>
</tr>
<tr>
<td>234</td>
<td>85</td>
<td>0.00 ± 0.01</td>
<td>0</td>
</tr>
<tr>
<td>139</td>
<td>95</td>
<td>1.01 ± 0.02</td>
<td>11.0</td>
</tr>
<tr>
<td>140</td>
<td>90</td>
<td>0.58 ± 0.06</td>
<td>6.3</td>
</tr>
<tr>
<td>121</td>
<td>105</td>
<td>0.78 ± 0.01</td>
<td>8.5</td>
</tr>
<tr>
<td>121</td>
<td>115</td>
<td>0.62 ± 0.01</td>
<td>6.7</td>
</tr>
<tr>
<td>296</td>
<td>100</td>
<td>0.85 ± 0.00</td>
<td>9.2</td>
</tr>
<tr>
<td>297</td>
<td>100</td>
<td>0.92 ± 0.00</td>
<td>10.0</td>
</tr>
<tr>
<td>301</td>
<td>95</td>
<td>1.39 ± 0.03</td>
<td>15.1</td>
</tr>
</tbody>
</table>

All organisms were incubated at their optimum growth temperatures. Strains 136, 139, 140, 121, 296, 297, and 301 were each incubated for 3 days. G. ehrlichii (strain SS015) was incubated for 7 days. Neither cell growth nor Fe(II) production was detected in the tubes containing FW-1a with SWa-1 as the sole electron acceptor and H$_2$ as the sole electron donor after 14 days of incubation. The data are means ± standard deviations of triplicate replicates.
tested, eight (G. ehrlichii and strains 121, 136, 139, 140, 296, 297, and 301) grew with SWa-1 as the sole electron acceptor and reduced 6.3 to 15.1% of the structural Fe(III). Some of the cultures (strains 136 and 301) reduced structural Fe(III) but did not dissolve it, and some others (strain 140 and G. ehrlichii) dissolved a substantial portion of iron (Table 2). In general, the extent of Fe(III) reduction did not correlate with the extent of iron dissolution (Table 2). Although G. ahangari (strain 234) and G. ferrireducens (strain FW-1a) were isolated on poorly crystalline Fe(III) oxide as the sole electron acceptor and H₂ as the sole electron donor, they were not capable of coupling the reduction of structural Fe(III) associated with SWa-1 to the oxidation of H₂ (Table 2).

RESULTS

Structural Fe(III) reduction by thermophilic and hyperthermophilic Fe(III)-reducing organisms. Out of 10 organisms

<table>
<thead>
<tr>
<th>SWa-1</th>
<th>Major element oxide for SWa-1 (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SiO₂</td>
</tr>
<tr>
<td>Control</td>
<td>46.56</td>
</tr>
<tr>
<td>Bioreduced</td>
<td>43.58</td>
</tr>
</tbody>
</table>

* The incubation period was 3 days (at 90°C).
examination of ruthenium red-stained cells of strain 140 and *G. ehrlichii* growing with SWa-1 smectite as the electron acceptor revealed a thick layer of electron-dense material around the cells, consistent with an EPS matrix (Fig. 3A and B, respectively). The thick electron-dense material was not observed in association with cells of other strains under investigation.

X-ray diffraction analysis of bioreduced SWa-1. It has previously been reported that Fe(III)-reducing microorganisms play a role in the transformation of smectite to illite (19). As shown in Fig. 4, smectite is the predominant phase in these bioreduced clays based on the presence of a strong diffraction peak at 5° 2θ after solvation with ethylene glycol vapor. This peak corresponds to a d-spacing of 17 Å and is interpreted to be the d₀₀₁ spacing for smectite. The strong diffraction peaks observed at 26.6° 2θ are lower-order ₀₀₁ reflections for smectite group minerals. There were no peaks observed at 8.8° 2θ which correspond to the strong diffraction peak (d₀₀₁) for illite. The low peak/saddle ratio (ratio of the peak at 5° 2θ and saddle at 4° 2θ) is also indicative of the presence of smectite and the absence of a mixed layered illite-smectite phase. The peaks observed in the area of 13° 2θ are the diffraction of crystalline components of the growth medium, which dried with the microbially reduced clays in producing the oriented mounts. The presence of illite as either a mixed layer of illite-smectite or illite itself was not recognized from the diffraction patterns by comparison to published patterns of illite-smectite and illite (reference 38 and references therein).

DISCUSSION

The results demonstrate that some thermophilic and hyperthermophilic Fe(III)-reducing microorganisms are capable of reducing the structural Fe(III) in smectite, suggesting that microbial reduction of structural Fe(III) in phyllosilicate minerals is possible in hot environments.

Extent of Fe(III) reduction and iron dissolution. Our study showed that 6.3 to 15.1% of initial Fe(III) was reduced in a model SWa-1 smectite by thermophilic and hyperthermophilic organisms (Table 2). This is 20 to 50% less than that reported for Fe(III) reduction of the same SWa-1 by mesophilic Fe(III) reducers. The extent of Fe(III) reduction in SWa-1 was 20 to 62% by mesophilic enrichment cultures (6, 24), 20% by *Geobacter* spp. (24), 20 to 46% by *Shewanella* spp. (21, 24), and ca. 50% by *Desulfotobacterium hafniense* (formerly *Desulfitobacterium frappieri*) (47). The experiments with both mesophilic and thermophilic organisms were performed under anaerobic conditions at circumneutral pH. The main difference is higher temperature, but the extent of Fe(III) reduction in our study does not seem to correlate with the temperature (Table 2). Therefore, physical-chemical factors cannot explain the lesser extent of structural Fe(III) reduction by thermophiles. Most probably the overall decrease in the extent of Fe(III) reduction is related to differences in the electron transfer pathways.

Eight out of 10 of the thermophilic and hyperthermophilic Fe(III)-reducing organisms tested solubilized structural iron in SWa-1. The concentration of iron in solution underestimates

Table 4. Calculated formulae for control SWa-1 (incubated without microorganisms) and SWa-1 microbially reduced by strain 140

<table>
<thead>
<tr>
<th>SWa-1 smectite</th>
<th>Formulae</th>
<th>Charge</th>
<th>Interlayer</th>
<th>Octahedral</th>
<th>Tetrahedral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Mg₀.₀⁷₋₀.₀₈; Ca₀.₀₁₋₀.₀₁; K₀.₀₂; Na₀.₃₅₋₀.₃₇; Fe(III)₁.₄₅₋₁.₂₆; Ti₀.₀₄₋₀.₀₂; Al₀.₄₋₀.₃ₙ; Mg₀.₀₂₋₀.₁₄; (Si₃.₆₋₃.₅₇; Al₀.₄₋₀.₄₃)O₁₀(OH)₂</td>
<td>0.₅₃ 0.₀₇ 0.₄₀</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioreduced</td>
<td>Mg₀.₁₃₋₀.₁₇; Ca₀.₀₁₋₀.₀₁; K₀.₀₁₋₀.₀₁; Na₀.₄₂₋₀.₃₉; Fe(III)₁.₂₆₋₁.₀₄; Ti₀.₀₄₋₀.₂₀; Fe(II)₀.₁₄₋₀.₁₆; Mg₀.₁₇₋₀.₁₆; (Si₃.₅₇₋₃.₆₂; Al₀.₄₃₋₀.₄)O₁₀(OH)₂</td>
<td>0.₇₁ 0.₂₇ 0.₄₃</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 3. Electron micrograph of thin section of strain 140 (A) and *G. ehrlichii* (B) (growing with SWa-1 as the electron acceptor and H₂ as the electron donor) stained with ruthenium red and showing the production of an EPS material around the cells.
the amount of iron liberated from the SWa-1 structure, since a substantial portion of liberated iron can be sorbed by cells and clay minerals (2, 9, 11, 55). In addition, the extent of measured iron dissolution did not correlate with the extent of microbial Fe(III) reduction (Table 2). A small amount (0.04 to 0.14 mmol/liter) of soluble Fe(III) was detected in all cultures for which iron dissolution was documented (Table 2). A similar phenomenon was observed by O’Reilly and coworkers (39), who documented partial alteration of NAu-1 smectite by both aerobic and Fe(III)-respiring cultures of *Shewanella oneidensis*, resulting in formation of poorly crystalline smectite, amorphous aluminosilicates, and small quantities of soluble Fe(III).

The highest amounts of iron were solubilized by a bacterium in the family *Geobacteraceae*, *G. ehrlichii*, and by archaeal strain 140. Interestingly, both strains also produced copious EPS material during growth on SWa-1, as demonstrated by its ability to bind to ruthenium red (Fig. 3). Ruthenium red is a polycationic dye that specifically binds to anionic EPSs. Previous studies (3, 35, 52) have shown that acidic EPSs may bind cations such as Fe$^{3+}$ and other trace metals. This and the fact that as much as 99% of dissolved Fe in the ocean is thought to be bound to organic ligands (43) strongly suggest that anionic microbial EPS materials play a key role in Fe dissolution. Furthermore, in the above-mentioned cultures of *G. ehrlichii* and strain 140 grown with SWa-1 and H$_2$ the dissolved iron was mainly in the form of Fe(II), which is consistent with earlier studies (22) showing that organic ligands are capable of removing structural Fe(II) from SWa-1.

Smectite-to-illite transformation. The kinetics of the smectite-to-illite conversion via an intermediate illite-smectite (I-S) mixed-layer phase in sediment diagenesis has been extensively studied (36). The type of stacking order, the percentage of illite layers in I-S, and the K-Ar ages of I-S are very useful in predicting the generation of crude oil and natural gas from source rocks such as shales and in gaining insights into how these hydrocarbons may have been generated in relation to the timing of the formation of hydrocarbon traps (40). As the burial temperature increases to 100 to 150°C in deep subsurface sediment, smectite is converted to illite via a solid-state transformation producing a mixed-layer phase, I-S, or by a dissolution-precipitation process. In the former solid-state mechanism, layer charge is created in smectite by substitution of Al$^{3+}$/H$_4$O for Si$^{4+}$/H$_4$O primarily as well as by the substitution of Mg$^{2+}$/H$_4$O for Al$^{3+}$/H$_4$O in the octahedral layer. After creation of layer charge, cations (primarily K$^+$) are attracted into the interlayer. Approximately 1 atom of K is added per formula unit during illite formation. In a dissolution-precipitation mechanism, illite is formed from the dissolution of smectite without forming an intermediate I-S mixed-layer phase. The mesophilic Fe(III)-reducing bacterium *Shewanella oneidensis* catalyzed the smectite-to-illite transformation via a dissolution-precipitation mechanism in a laboratory study (19).

While our results did not show the formation of illite or I-S, our chemical analyses of control and bioreduced SWa-1 indicated that structural Fe(III) reduction by hyperthermophilic strain 140 was associated with an increase in layer charge in the octahedral sheet followed by the incorporation of magnesium, sodium, and potassium (mostly magnesium) into the structure. The amount of layer charge and the interlayer cations formed in the time period of this study (3 days) were not quantitatively sufficient to form an illite-like structure (Table 4). However, this does not preclude formation of illite from smectite via a

![X-ray diffraction patterns of initial and bioreduced SWa-1, after solvation with ethylene glycol. All organisms tested are listed on the far right and at the end of each corresponding X-ray diffraction pattern. Starting from the bottom, the strains are SWa-1 (control), followed by strain 140 (G. ferrireducens (strain FW-1a), G. ahangari (strain 234), and G. ehrlichii (strain SS015) as well as strains 301, 139, 136, 296, 297, and 121 at 105°C and strain 121 at 115°C.](http://aem.asm.org/)

FIG. 4. X-ray diffraction patterns of initial and bioreduced SWa-1, after solvation with ethylene glycol. All organisms tested are listed on the far right and at the end of each corresponding X-ray diffraction pattern. Starting from the bottom, the strains are SWa-1 (control), followed by strain 140 (G. ferrireducens (strain FW-1a), G. ahangari (strain 234), and G. ehrlichii (strain SS015) as well as strains 301, 139, 136, 296, 297, and 121 at 105°C and strain 121 at 115°C.)
solid-state transformation as the result of microbially mediated redox cycling. In an earlier study of the effect of chemical iron redox cycling in SWa-1 on potassium fixation, the amount of fixed K was documented to increase with each redox cycle, resulting in conversion of smectite to a more illitic form (48). Therefore, our study supports the idea of possible microbial involvement in the conversion of smectite to illite in the subsurface (5).

Implications for Fe(III) cycling in hot environments. The results indicate that Fe(III)-bearing phyllosilicates such as smectite could potentially contribute to the microbial cycling of iron in hydrothermal environments (8, 42, 44). It remains to be seen whether thermophilic or hyperthermophilic microorganisms can reduce the Fe(III) in other Fe(III)-bearing phyllosilicates formed by hydrothermal metamorphism of mafic rocks (serpentine, talc, and chlorite). The inability of G. ferrireducens and G. ahangari to reduce the structural Fe(III) in smectite, despite their ability to reduce Fe(III) hydroxide, suggests that the mechanisms for electron transfer to these sources of solid-phase Fe(III) are different. Further studies are required to clarify the pathways leading to Fe(III) reduction in phyllosilicates versus Fe(III) hydroxides.

ACKNOWLEDGMENTS

We thank Anna-Louise Reysenbach (supported by National Science Foundation grant OCE-0242038) and John A. Baross for the vent samples. This work was supported by a start-up package provided to K.K. by the Department of Microbiology and Molecular Genetics and the Michigan Agricultural Experiment Station at Michigan State University and by a grant (MCB-0348085) to D.R.L. and K.K. from the “Microbial Observatories Program” of the National Science Foundation.

REFERENCES