Purdue University

From the Selected Works of David D Nolte

2011

Table of Contents

David D Nolte, Purdue University

Available at: https://works.bepress.com/ddnolte/11/
David D. Nolte

Optical Interferometry for Biology and Medicine

Springer
Light is at once the most sensitive and the most gentle probe of matter. It is commonplace to use light to measure a picometer displacement far below the nanometer scale of atoms, or to capture the emission of a single photon from a fluorescent dye molecule. Light is easy to generate using light-emitting diodes or lasers, and to detect using ultrasensitive photodetectors as well as the now ubiquitous digital camera. Light also has the uncanny ability to penetrate living tissue harmlessly and deeply, while capturing valuable information on the health and function of cells. For these reasons, light has become an indispensible tool for biology and medicine. We all bear witness to the central role of light in microscopic imaging, in optical biosensors and in laser therapy and surgery.

Interferometry, applied to biology and medicine, provides unique quantitative metrology capabilities. The wavelength of light is like a meterstick against which small changes in length (or phase) are measured. This meterstick analogy is apt, because one micron is to one meter as one picometer is to one micron – at a dynamic range of a million to one. Indeed, a picometer is detected routinely using interferometry at wavelengths around one micron. This level of interferometric sensitivity has great utility in many biological applications, providing molecular sensitivity for biosensors as well as depth-gating capabilities to optically section living tissue.

Optical Interferometry for Biology and Medicine presents the physical principles of optical interferometry and describes their application to biological and medical problems. It is divided into four sections. The first provides the underlying physics of interferometry with complete mathematical derivations at the level of a junior undergraduate student. The basics of interferometry, light scattering and diffraction are presented first, followed by a chapter on speckle that gives the background for this important phenomenon in biological optics – virtually any light passing through tissue or cells becomes “mottled.” Although it presents a challenge to imaging, speckle provides a way to extract statistical information about the conditions of cells and tissues. Surface optics is given a chapter to itself because of the central role played by surfaces in many optical biosensors and their applications.
The next three sections of the book discuss specific applications, beginning with interferometric biosensors, then interferometric microscopy followed by interferometric techniques for bulk tissues. Interferometric biosensors are comprised of many different forms, including thin films, waveguides, optical resonators and diffraction gratings. Microscopy benefits especially from interferometry because layers of two-dimensional cells on plates can be probed with very high sensitivity to measure subtle differences in refractive index of cells and their constituents. Quantitative phase microscopy has become possible recently through application of interferometric principles to microscopy. As cell layers thicken into tissues, imaging becomes more challenging, but coherent techniques like optical coherence tomography (OCT) and digital holography (DH) are able to extract information up to 1 mm deep inside tissue.

While the principles of interferometry are universal, this book seeks always to place them in the context of biological problems and systems. A central role is played by the optical properties of biomolecules, and by the optical properties of the parts of the cell. The structure and dynamics of the cell are also key players in many optical experiments. For these reasons, there are chapters devoted explicitly to biological optics, including a chapter on cellular structure and dynamics as well as a chapter on the optical properties of tissues. Throughout the book, biological examples give the reader an opportunity to gain an intuitive feel for interference phenomena and their general magnitudes. It is my hope that this book will be a valuable resource for student and expert alike as they pursue research in optical problems in biology and medicine.

I would like to thank my current students Ran An, Karen Hayrapetyan and Hao Sun for proofreading the final manuscript, and much of this book is based on the excellent work of my former students Manoj Varma, Kwan Jeong, Leilei Peng, Ming Zhao and Xuefeng Wang. My colleagues Ken Ritchie, Brian Todd and Anant Ramdas at Purdue University provided many helpful insights as the book came together into preliminary form. Finally, I give my heartfelt appreciation to my wife Laura and son Nicholas for giving me the time, all those Saturday mornings, to do my “hobby.”

West Lafayette, IN, USA

David D. Nolte
Contents

Part I Fundamentals of Biological Optics

1 Interferometry ... 3
 1.1 Two-Wave Interference .. 3
 1.1.1 Complex-Plane Representation of Plane Waves 3
 1.1.2 Two-Port Interferometer 7
 1.1.3 Homodyne Phase Quadrature 11
 1.1.4 Heterodyne and Beats .. 12
 1.1.5 Noise and Detection ... 13
 1.1.6 Sub-nanometer Noise-Equivalent Displacement 16
 1.2 Interferometer Configuration Classes 17
 1.2.1 Wavefront-Splitting Interferometers: Young’s Double Slit 17
 1.2.2 Amplitude-Splitting Interferometers 20
 1.2.3 Common-Path Interferometers 26
 1.3 Holography .. 29
 1.3.1 Holographic Gratings ... 30
 1.3.2 Image Reconstruction .. 32
 1.3.3 Image-Domain or Fourier-Domain Holography 33
 1.4 Coherence .. 35
 1.5 Spectral Interferometry .. 36
 1.5.1 Non-transform-Limited Pulses: Broadening 39
 1.6 Interferometry and Autocorrelation 39
 1.7 Intensity–Intensity Interferometry 43
 1.7.1 Degree of Coherence .. 45
 1.7.2 Hanbury Brown–Twiss Interferometry 45

Selected Bibliography ... 47
References .. 47
2 Diffraction and Light Scattering .. 49
 2.1 Diffraction ... 50
 2.1.1 Scalar Diffraction Theory 50
 2.1.2 Fraunhofer Diffraction from Apertures and Gratings 53
 2.1.3 Linear vs. Quadratic Response and Detectability 61
 2.2 Fourier Optics .. 64
 2.2.1 Fresnel Diffraction ... 66
 2.2.2 Optical Fourier Transforms 67
 2.2.3 Gaussian Beam Optics 69
 2.3 Dipoles and Rayleigh Scattering 71
 2.4 Refractive Index of a Dilute Molecular Film 75
 2.4.1 Phase Shift of a Single Molecule in a Focused Gaussian Beam ... 76
 2.4.2 Phase Shift from a Dilute Collection of Molecules 78
 2.5 Local Fields and Effective Medium Approaches 79
 2.5.1 Local Fields and Depolarization 79
 2.5.2 Effective Medium Models 80
 2.6 Mie Scattering .. 83
 2.6.1 Spherical Particles ... 83
 2.6.2 Effective Refractive Index of a Dilute Plane of Particles ... 85
 2.7 Nanoparticle Light-Scattering 87
 2.7.1 Quantum Dots ... 88
 2.7.2 Gold and Silver Nanoparticles 89
 Selected Bibliography ... 94
 References ... 94

3 Speckle and Spatial Coherence ... 95
 3.1 Random Fields ... 96
 3.2 Dynamic Light Scattering (DLS) 99
 3.2.1 Heterodyne: Field-Based Detection 101
 3.2.2 Homodyne: Intensity-Based Detection 103
 3.2.3 Fluctuation Power Spectra: Wiener-Khinchin Theorem .. 104
 3.3 Statistical Optics .. 106
 3.4 Spatial Coherence .. 108
 3.4.1 Autocorrelation Function and Power Spectrum 108
 3.4.2 Coherence Area ... 112
 3.5 Speckle Holography .. 114
 3.6 Caustics .. 115
 Selected Bibliography ... 120
 References ... 120
4 Surface Optics .. 123
 4.1 Reflection from Planar Surfaces ... 123
 4.2 Reflectometry of Molecules and Particles 128
 4.2.1 Molecules on Surfaces .. 129
 4.2.2 Particles on Surfaces .. 132
 4.3 Surface Films ... 134
 4.3.1 Transfer Matrix ... 136
 4.3.2 Biolayers on a Substrate ... 137
 4.4 Surface Plasmons ... 140
 4.4.1 Planar Gold Films ... 140
 4.4.2 Plasmon Polariton Coupling .. 143
Selected Bibliography ... 145
References ... 145

Part II Molecular Interferometry and Biosensors

5 Interferometric Thin-Film Optical Biosensors 149
 5.1 Label-Free Optical Biosensors and Direct Detection 150
 5.2 Ellipsometric Biosensors .. 151
 5.2.1 Experimental Ellipsometry on Biolayers 151
 5.2.2 Interferometric Ellipsometry on Biolayers 154
 5.3 Thin-Film Colorimetric Biosensors .. 156
 5.4 Molecular Interferometric Imaging .. 158
 5.4.1 In-line Quadrature .. 159
 5.4.2 Image Shearing and Molecular Sensitivity 162
 5.4.3 Biosensor Applications .. 165
 5.5 The BioCD .. 167
 5.5.1 Spinning Interferometric Biochips 167
 5.5.2 Molecular Sensitivity, Sampling, and Scaling 170
Selected Bibliography ... 174
References ... 174

6 Diffraction-Based Interferometric Biosensors 177
 6.1 Planar Diffractive Biosensors ... 177
 6.1.1 Diffraction Efficiency of Biolayer Gratings 179
 6.1.2 Differential Phase Contrast ... 182
 6.2 Microstructure Diffraction .. 185
 6.2.1 Micro-diffraction on Compact Disks 185
 6.2.2 Micro-Cantilevers .. 189
 6.3 Bead-Based Diffraction Gratings ... 192
References ... 194
7 Interferometric Waveguide Sensors ... 197
 7.1 Evanescent Confinement .. 197
 7.1.1 Total Internal Reflection (TIR) 198
 7.1.2 Dielectric Waveguide Modes 200
 7.2 Waveguide Couplers ... 206
 7.3 Waveguide Structures ... 208
 7.3.1 Antiresonant Waveguide (ARROW) 209
 7.3.2 The Resonant Mirror ... 210
 7.4 Mach–Zehnder Interferometric Waveguide Sensors 211
 7.5 Young’s-Type Fringe-Shifting Interferometers 213
 7.6 Guided-Mode Resonance (GMR) Sensors 214
 7.7 Optofluidic Biosensors ... 217
 7.8 Ring and Microdisk Resonators ... 219
 7.9 Photonic-Bandgap Biosensors ... 220
References ... 222

Part III Cellular Interferometry

8 Cell Structure and Dynamics ... 227
 8.1 Organization of the Cell ... 227
 8.2 Optical Properties of Cellular Components 229
 8.3 The Cytoskeleton ... 230
 8.4 Cellular Mechanics .. 231
 8.4.1 Brownian Motion ... 232
 8.4.2 Anomalous Diffusion .. 234
 8.4.3 Cell Rheology .. 237
 8.4.4 Generalized Stokes-Einstein Relation 238
 8.5 Active Intracellular Motion ... 240
 8.5.1 Microrheology Far from Equilibrium 240
 8.6 Membrane Mechanics ... 243
Selected Bibliography ... 248
References ... 248

9 Interference Microscopy ... 251
 9.1 Phase-Contrast Microscopy .. 251
 9.2 Differential Interference Contrast 255
 9.3 Particle Tracking Interferometry 257
 9.3.1 Back Focal-Plane Interferometry 257
 9.3.2 DIC Displacement Measurement 260
 9.4 Reflection Interference Contrast Microscopy 262
 9.5 Fluorescence Interference Contrast Microscopy 264
 9.6 Angular Scanning Interferometry 265
 9.7 Broad-Field Interference Microscopy 266
 9.8 Digital Holographic Microscopy .. 268
References ... 271
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4 Gaussian Pulses</td>
<td>338</td>
</tr>
<tr>
<td>13.5 Error Function</td>
<td>339</td>
</tr>
<tr>
<td>13.6 Gaussian Diffusion</td>
<td>339</td>
</tr>
<tr>
<td>13.7 Probability Distribution Generation</td>
<td>340</td>
</tr>
<tr>
<td>13.8 Trigonometric Identities</td>
<td>340</td>
</tr>
</tbody>
</table>

Index .. 343