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a b s t r a c t

In this paper, a fuzzy multi-criteria decision making model is presented based on a feed forward

artificial neural network. This model is used to capture and represent the decision makers’ preferences.

The topology of the neural network model is developed to train the model. The proposed model can use

historical data and update the database information for alternatives over time for future decisions.

Basically, multi-criteria decision making problems are formulated, and neural network is used to learn

the relation among criteria and alternatives and rank the alternatives. We do not use any utility

function for the modeling; however, a unique method is proposed for eliciting the information from

decision makers. The proposed model is applicable for a wide variety of multi-attribute decision

making problems and can be used for future ranking or selection without managers’ judgment effort.

Simulation of the managers’ decisions is demonstrated in detail and the design and implementation of

the model are illustrated by a case study.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Decision making involves choosing some course of action
among various alternatives. For a decision maker, fulfilling the
conflicting goals while satisfying the constraints of the system is
the main concern.

The ability to make the best possible decision (output) based
on past and present information and future predictions (input) is
a formidable task. A tool that can facilitate this task is of great
help for decision makers (Malakooti and Zhou, 1994).

Increasingly, researchers are exploring artificial neural net-
works as a method for decision support systems. Neural network
is a powerful data modeling tool that is able to capture and
represent complex input/output relationships.

The most important applications of neural networks can
be categorized in four groups: Classification such as medical
diagnosis and target recognition, function approximation such
as process modeling, time series prediction, and data mining
(Golmohammadi et al., 2009).

The objective of this paper is primarily to design a decision
model based on neural networks, rather than to focus on neural
networks design challenges in depth. The proposed model is
explained in general and is illustrated by a case on supplier

evaluation and selection as one of the neural network applications.
The main contributions of this research are:

� A decision model based on the relationship of a set of input
and output is designed in a unique manner to predict the score
of objects (suppliers or any objects).
� An innovative pairwise comparison technique for weight

calculations and output values is applied for an NN model.
� Performance history of objects is considered in the evaluation

process and modeling.

The model can use the input and evaluate objects and rank
them as output. The proposed model is used for future ranking
without decision makers’ judgment effort. However, the tradi-
tional decision making methods follow the same process to make
the decision. The difference between this model and other
traditional models is shown in Fig. 1. We will discuss more about
the neural networks models for multi-criteria decisions in the
literature section.

This paper is organized in several sections. After the literature
review and brief introduction of neural network structure, model
design is illustrated in Section 4. In Section 5, the model design is
implemented with more details using a case study. In Section 6,
the design is improved for better results. In Section 7 a sensitivity
analysis is performed for the case study model. The last section
provides one more example of the model application and draw
conclusion.
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2. Literature review

Many models have been presented for decision making in the
literature. They are often intuitively judged, applied in a complex
manner, lack qualitative factors to show the imprecision of the
performance data, and do not corporate to historical performance.

These methods are mostly based on multi-objective optimiza-
tion problems (MOP) (Weber et al., 1998, 2000; Dahel, 2003; Chen
et al., 2006; Awasthi et al., 2010), data envelopment analysis
(DEA) (Liu et al., 2000; Weber, 1996), analytic hierarchical process
(AHP) (Ghodsypour and O’Brien, 1998; Bhutta and Huq, 2002),
simple multi-attribute rating technique (SMART) (Seydel, 2005),
total cost approaches and multiple attribute utility theory
(Ellram, 1990).

These models provide systematic approaches for decision
makers to evaluate and score objects with multiple criteria.
Nevertheless, these models are not easy to implement. Models
based on multi-objective optimization require the decision
makers to exogenously specify the exact values of weights of
individual criteria. It is, however, difficult to obtain precise weight
values. The weight determination is a challenging task for
implementing the MOP approach. Decision makers choosing the
SMART approach face a similar problem. DEA appears to be the
easiest for practical implementation. Where DEA models are
applied to supplier selection problems, decision makers cannot
have any involvement or control of the importance of the criteria.
To some extent, these DEA approaches are black box models for
decision makers in real situations (Singh et al., 2007).

The total cost of ownership is a methodology and philosophy
which looks beyond the price of a purchase to include many other
purchase related costs. This approach has become increasingly
important as organizations look for ways to better understand
and manage their costs. However, the total cost model is expen-
sive to implement due to its complexity, requires more time, and

implies the ability to identify the more important elements
(Ellram, 1995).

The multiple attribute utility theory (MAUT) method is appro-
priate in situations where a variety of uncontrollable and unpre-
dictable factors affect the decision. It is capable of handling
multiple conflicting attributes inherent in international supplier
selection (Bard, 1992).

Another category of decision-making models is intelligent
methods. Neural networks as one of these intelligent methods
attempt to simulate the human brain by collecting and processing
data for the purpose of ‘‘remembering’’ or ‘‘learning’’. Some
researchers have developed neural networks models for multi-
criteria decision making (Malakooti and Zhou, 1994; Sun et al.,
1996; Chen and Lin, 2004). Sun et al. (2007) proposed a new
interactive multiple objective programming procedure that com-
bines the strengths of the interactive weighted Tchebyche proce-
dure and the interactive feed forward artificial neural network
procedure. Chen and Lin (2004) proposed a new approach for
solving multiple criteria decision-making (MCDM) problems
based on decision neural network (DNN). The DNN is used to
capture and represent the decision maker’s (DM’s) preference.
Then, with DNN, an optimization problem is solved to search for
the most desirable solution. Shih et al. (2004) focused on utilizing
the dynamic behavior of artificial neural networks (ANNs) to
solve multi-objective programming (MOP) and multilevel pro-
gramming (MLP) problems. Singh et al. (2007) proposed multi-
criterion frameworks involving several subjective and quantita-
tive factors that allow the complexity of group decision making
(GDM) to get worse, especially for those problems which have
strategic dimensions. Their improved decision neural network
(IDNN) based methodology has been developed to solve the
multi-criterion decision problem in GDM. Reductions in the
training data set, exploitation of indirect methods like multi-
plicative preference relation during the training process, and

Fig. 1. The conceptual difference between the proposed model and traditional methods.
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reduced number of iterations to map the MAUF are the advantages
of this novel methodology. Tan et al. (2006) proposed a hybrid
intelligent system integrating case-based reasoning (CBR) and the
fuzzy ARTMAP (FAM) neural network model to support managers in
making timely and optimal manufacturing technology investment
decisions. Wu (2009) presented a hybrid model using data envelop-
ment analysis (DEA), decision trees (DT) and neural networks (NNs)
to assess supplier performance. The model consists of two modules:
Module 1 applies DEA and classifies suppliers into efficient and
inefficient clusters based on the resulting efficiency scores. Module
2 utilizes firm performance-related data to train DT, NNs model and
apply the trained decision tree model to new suppliers.

All these models used Neural Networks; however, the models
are either deeply involved in developing neural network struc-
tures (especially weight computations among nodes) or cumber-
some computations are needed to evaluate alternatives. The
design of our proposed model can map and simulate the decision
makers’ preference for training and future predication easily and
efficiently. Using the history data for future evaluation and
ranking is another advantage of this model. The input and output
design and application of pairwise comparisons are unique.
Especially, regular procedure of pairwise comparison is improved
to enhance the accuracy of training data.

3. Neural networks structure

A set of valid and adequate data combined with a properly
designed neural network can lead to the correct decision. The
general structure of the artificial neural networks is shown in
Fig. 2. In this structure there are three parallel layers. The first
layer (input) contains the independent variables, the second
layer(s) are hidden layers containing processing units called
hidden nodes, and the third (output) layer contains the dependent
variables. The layers are connected by weighted links. These
weights are estimated through a training procedure. Fig. 3 shows
input and output of one of the hidden nodes.

The network performs a forward pass with the production of
an error signal for each output neuron. The error signals are then
transmitted backward from the output layer to the neurons in the
intermediate layer that contribute directly to the output (Chen
and Lin, 2004; Sun et al., 1996; Malakooti and Zhou, 1994). This is
part of the training step which will be discussed later.

Selecting the best neural network architecture is crucial to the
success of NN modeling (Hill et al., 1996). Several design factors,

including selection of input variables, architecture of the network
and quantity of training data significantly impact the accuracy of
neural networks forecast. The process involves the daunting task
of constructing a large number of NN topologies with different
structures and parameter values before arriving at an acceptable
model (Denton and Hung, 1996; Dorsey and Mayer, 1994). The
main effective factors in neural networks modeling are the
number of input nodes, the number of hidden layers, the number
of hidden nodes, weight initialization, transfer function, learning
rule, learning rate, and stopping training.

The number of input nodes may affect the neural network
performance. Zhang et al. (2001) studied the effect of input nodes
from 1 to 5, hidden nodes, and training sample size. The result
showed that the number of input nodes has significant impor-
tance when compared with hidden nodes. Hidden nodes can
affect the nonlinearity of equations. Hidden layers act as layers
of abstraction, pulling features from inputs. Adding hidden layers
will increase both the time and the number of training exemplars
necessary to train the network properly. However, too many
hidden layers will cause memorizing instead of generalizing
(Dow and Sietswa, 1991). One hidden layer is sufficient for most
problems. Increasing the number of units in the hidden layer
seems beneficial (Siying et al., 1997).

Weight initialization has an effect on the convergence time.
The weights are most commonly initialized randomly. The trans-
fer function describes how a neuron’s firing rate varies with the
input it receives.

Most of NNs applications report using backpropagation
method. The goal of this method is to find values for all weights
in the network that minimize the error through the gradient
descent method.

4. Decision making models based on fuzzy data

Fuzzy data was used in this research. A brief review of fuzzy
set theory is as follows:

A fuzzy set-based approach to supplier selection may repre-
sent a valid tool in supporting an organizational decision-making
process. The concept of fuzzy set theory was introduced by Zadeh
(1965). Fuzzy set theory is a very powerful tool that can be used
to quantify imprecise data and deal with vague and incomplete
data.

4.1. Fuzzy sets

A fuzzy set is a class of objects with a continuum of member-
ship grades. A membership function, which assigns to each object
a grade of membership, is associated with each fuzzy set. Usually,
the membership grades range between 0 and 1. When the grade
of membership for an object in a set is one, this object is
absolutely in that set; when the grade of membership is 0, the
object is not in that set. A brief review of some basic definitions of
fuzzy set and its operations from mathematical aspects is pre-
sented. The main reference for this section is by Chen and Hwang
(1991).

4.1.1. Definition of fuzzy set

Let U be a classical (or ordinary) set of objects, called the
universe, whose generic elements are denoted by x. That is,
U¼{x}. A fuzzy set A in U is characterized by a membership
function mA(X) which associates with each element in U a real
number in the interval (0–1). The fuzzy set, A, is usually denoted
by the set of pairs (Chen and Hwang, 1991).

A¼ fðx,mAðXÞÞ,xAUg ð1Þ

Input Layer Hidden Layer Output Layer

Fig. 2. The structure of the artificial neural networks.

Fig. 3. The mapping of a hidden node.
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For an ordinary set, A

mAðXÞ ¼
1, xAA

0, x =2 A

(
ð2Þ

When U is a finite set {x1,y, xn}, the fuzzy set on U may also be
represented as

A¼
Xn

i ¼ 1

xi=mAðxiÞ ð3Þ

When U is an infinite set, the fuzzy set maybe represented as

A¼

Z
ðx=mAðxÞÞdx ð4Þ

4.1.2. Basic concepts of fuzzy set

The complement, support, a-cut, convexity, normality and
cardinality of a fuzzy set are presented in the following sections.

� Complement of a fuzzy set: The definition of the complement of
fuzzy set A is defined as

mAðXÞ ¼ 1�mAðXÞ, xAU ð5Þ

� Support of a fuzzy set: Those elements which have nonzero
membership grades are considered as support of that fuzzy set

SðAÞ ¼ fxAU9mAðXÞZ0g ð6Þ

� a-Cut of a fuzzy set: a-Cut of a fuzzy set is an ordinary set
whose elements belong to fuzzy set A, at least to the degree of a

Aa¼ fxAU9mAðXÞZag ð7Þ

It is a more general case of the support of a fuzzy set. If a¼0 then
Aa¼S(A)
� Convexity of a fuzzy set: A fuzzy set is convex if

mAðlX1þð1�lÞX2ÞZminðmAðX1Þ, mAðX2ÞÞ ð8Þ

X1 and X2AU also lA(0–1)

� Normality of a fuzzy set: A fuzzy set A is normal only if there are
one or more x0 values such that
mA(x0)¼1

� Cardinality of a fuzzy set: The cardinality of fuzzy set A

evaluates the proportion of elements of U having the property
A. When U is finite, it is defined as

A
�� ��¼XmAðxÞ, xAU ð9Þ

For infinite U, the cardinality is defined as

A
�� ��¼ Z

x
mAðxÞdx ð10Þ

For more details, enormous materials can be found in the
literature about fuzzy set theory.

5. Model design

To design a neural network model, three main phases should be
considered. These phases – valid for any application – are illustrated
in detail for suppliers selection. Fig. 4 shows the model design.

Multiple criteria need to be taken into account when selecting
suppliers. To determine how suppliers have performed in the
previous or current contracts, the decision maker must consider a
set of criteria such as quality, technology, and price. In other
words, the performance history, based on defined criteria, is an

important input for the decision making process. The decision
maker evaluates suppliers based on their input, and determines
the ranks for suppliers as output. How the decision maker thinks
and makes judgments about the suppliers’ rank is a black box. If
one can simulate this black box, then the input data could be used
to estimate the suppliers’ scores and rank them for future usage
without the decision makers’ judgment. The proposed model
simulates this black box by Neural Networks.

5.1. Design elements

Input and output layers are designed based on the application.
Preparing the input and output data must be completed prior to
the hidden layers development. Input is the data or information
needed to make the decision. The results of the decision are the
object rankings or scores as output.

5.1.1. Input

In supplier selection, the input data is prepared from suppliers’
performance. Decision makers consider several criteria, such as
quality, delivery, price, technology, etc., to evaluate suppliers’
performance. Historical and recent suppliers’ data are needed for
each individual criterion. If they have a comprehensive database
of the suppliers’ performance, a set of functions can be defined to
transform the raw data for each criterion to the input data for the
neural network model. For example, quality might be measured
by the ratio of the number of defective parts to the number of
delivered parts in each contract for each supplier. It is emphasized

Implementing Phase

Testing Phase + Sensitivity Analysis

Model Design Improvement 

Making Input
(Designing Functions)

Making Output
(Improving Pairwise Comparison)

Determining NN Structure

Model Training

Testing Phase

Model Design

Making Input

Making Output
(Pairwise Comparison+ Defuzzification)

Determining NN Structure

Model Training

Fig. 4. Model design steps.
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that the database, which has all data history of suppliers perfor-
mance such as delays in deliveries, amount of defective parts,
quality issues, etc., should be complete and accurate; so that the
functions can be defined appropriately.

5.1.2. Output

Output is the rank or score of suppliers based on the decision
makers’ judgment. In a simple case, decision makers can consider
the rank intuitively, or follow their own scoring system. In this
study an application of the pairwise comparison method based on
fuzzy data for output estimation in neural network is proposed to
make the decision.

5.1.3. Neural networks architecture

Selecting the rest of neural networks architecture is the last
step to make the entire structure of the model ready for the
training step. Several design factors should be taken into account,
such as number of hidden nodes, hidden layers, transfer func-
tions, learning rules, etc. There is no optimal formula for deter-
mining the appropriate architecture; however, trial and error
approach for the key factors, and following the rule of thumb, can
facilitate finding a good solution. Using existing off-the-shelf
software such as Neurosolution, apart from application, can help
the user design a proper structure. Discussing this level of detail is
not the purpose of this paper, and it can be easily obtained via
literature in neural network structure (Sexton et al., 1998;
Malakooti and Zhou, 1994; Hill et al., 1996).

5.2. Training

Once a network has been structured for a particular applica-
tion, it is ready to be trained. The network is trained with a
training set of data representing the decision-makers’ decisions
and preferences in several situations to learn the decision-maker’s
behavior (Albino and Garavelli, 1998). Training is a process in
which the network is presented with a desired output value, also
called a knowledgeable teacher, for each pattern that is presented
as input. This type of training is called supervised training. In
supervised training, both the inputs and the outputs are provided.
The network then processes the inputs and compares its resulting
outputs against the desired outputs. Errors are then propagated
back through the system, causing the system to adjust the
weights, which control the network. This process occurs over
and over as the weights are continually tweaked. The set of data,
which enables the training, is called the training set. During the
training of a network, the same set of data is processed many
times as the connection weights are ever refined (Neural
Computing—A Technology Handbook, 1993).

Some networks never learn for a number of reasons such as
situations where the input data do not contain the specific
information from which the desired output is derived. Networks
also cannot converge if there is not enough data to enable
complete learning. Ideally, there should be enough data so that
part of the data can be held back as a test. If a network simply
cannot solve the problem, with adequate and valid data, the
designer must review the network structure.

Another part of the designer0s creativity governs the rules of
training. There are many laws (algorithms) used to implement the
adaptive feedback required to adjust the weights during training.
The most common technique is backward-error propagation,
more commonly known as backpropagation. The backpropagation
neural network is the most popular neural network paradigm
used (Freeman and Skapura, 1992). When the system has been
correctly trained, and no further learning is needed, the weights
can be frozen.

To train the model accurately, the extreme (minimum and
maximum) values in the population should be used in the
training set. The size of this set is about 80% of the entire data
set as a rule of thumb.

5.3. Testing

Many layered networks with multiple nodes are capable of
memorizing data. To determine if the system is simply memoriz-
ing its data in some non-significant way, supervised training must
hold back a set of data to test the system after it has undergone its
training.

In the testing phase, the networks performance is checked by
analyzing the results of some examples not used in the training
set and comparing it to actual decisions (or scores) of the decision
maker. The size of this set is about 20% of the entire data as a rule
of thumb.

5.4. Implementing

Once implemented, the network then generates a score or rank
for each of the potential suppliers in future.

6. Case study

In the following, 31 suppliers for 8 products of a company in
the automotive industry are studied. This company is in charge of
parts preparation for a car manufacturer, with all responsibilities
such as dealing with suppliers, scheduling, quality, etc. The list of
suppliers is shown in Table 1.

First a neural network model is designed based on managers’
judgment for suppliers’ performance evaluation. Second the
drawbacks of this model are discussed and input and output of
model are redesigned to improve the accuracy of the prediction.
The improvement is validated and a sensitivity analysis is
performed for the improved model as shown in Fig. 4.

6.1. Input

The criteria are quality (Q), delivery (D), technology (T), price
(P) and location (L). Since historical and recent suppliers’ data are
needed for each individual criterion, a well-defined function for
each criterion should be determined to convert the data into
input data for the model. This function which covers performance
history of suppliers can be very effective for the final result.
However, it needs a database which includes the data for suppliers’
performance. For example for delivery we need to know how many
parts suppliers are behind schedule, or how much delay is based on
their schedule. Suppliers might have several contracts. These should
be considered in the function to show their performance as input.

To determine the role of performance data, first a model is
designed. The decision makers of the system provided a simple

Table 1
Candidate suppliers for each product.

Products Suppliers

Product A 8 3 5 10

Product B 5 6 13 8

Product C 11 12 16 1 4

Product D 5 15 9

Product E 14 7 17 18

Product F 21 20 26 29

Product G 23 25 24 28 30

Product H 19 22 27 31
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table for the suppliers’ performance as shown in Table 3. The scale
of criteria ratings is shown in Table 2. Decision makers assigned a
score to the suppliers from 1 to 9 based on criteria. The weight is
the average score of two decision makers considered for each
criterion as input. After completing Table 3, W columns as input
data are ready to be used for training the neural network model.

6.2. Output

Decision makers assign evaluation scores to suppliers based on
their performance and rank them. The score is the output of the
decision making process. The goal is to have a model which
produces a score (model output) for each supplier. The score for
some suppliers is required for training purposes by the NN. To
obtain these scores, a unique way of simulating the decision
makers’ judgment based on pairwise comparisons matrix is
developed.

6.2.1. Pairwise comparison

One would like to be able to rank the alternatives (or criteria)
in order of importance, and to assign to the alternatives (or
criteria) some relative ranking indicating the degree of impor-
tance of each alternative (criterion) with respect to the other
alternative. In other words, decision maker’s judgment based on
his or her preference for the pairwise comparisons of two
alternatives is required. However, due to its use of unbalanced
scale of judgments and its inability to adequately handle the
inherent uncertainty and imprecision in the pairwise comparison
process, fuzzy judgments were developed as a solution to tackle
these criticisms (Deng, 1999).

Two methods of eliciting fuzzy judgment are described in the
literature. The first method is eliciting information directly from
fuzzy numbers (Tseng and Klein, 1989). When giving numerical
values of strength of preferences, the decision makers are limited
from 1 to 9. However, they are not restricted to integer numbers
and have freedom to select any real number in the range of 1–9.
The highest and the lowest preferences are assigned by 9 and 1,
respectively.

Let C¼{Cj9j¼1, 2, y, n} be the set of criteria. Matrix A (n�n)
shows the pairwise comparison on n criteria. The preference value
of the comparison is shown as aij (i,j¼1, 2, y, n).

A¼

a11 a12 . . . a11

a21 a22 . . . a2n

^ ^ & ^

an1 an2 . . . ann

2
66664

3
77775, aii ¼ 1, aji ¼ 1=aij, aija0 ð11Þ

In the second method, one uses linguistic variables which are a
set whose elements are linguistic values that are names of fuzzy
sets on the universe of discourse (Dubois and Prade, 1980). Direct
method of obtaining the judgment data has been criticized as less
effective than using linguistic variables (Zimmirmann, 1987).
Here, we use the linguistic variables method to take advantage
of its effectiveness.

Several methods have been illustrated in the literature to
analyze the linguistic variables. The majority of approaches

require cumbersome computations (Chen and Hwang, 1991),
and they are not suitable for solving problems with more than
10 alternatives associated with more than 10 attributes. Also
some of the methods require that the elements in the decision
matrix be presented in a fuzzy format, even though they are crisp
in nature. Chen and Hwang (1991) proposed a method that
tackles these issues. This method is applied and illustrated for
our case. This approach converts the fuzzy linguistic terms to
crisp data. This transformation has two steps:

(1) Converting linguistic terms to fuzzy numbers: A numerical
approximation system is used to systematically convert
linguistic terms into their corresponding fuzzy numbers,
which contain eight conversion scales. The principle of this
system is simply to select a figure that contains all the verbal
terms given by the decision maker and use the fuzzy numbers
in that figure to represent the meaning of the verbal terms.

(2) Converting the fuzzy number to crisp number: Details of the
process and calculations are shown in Appendix A. We
consider the linguistic terms as very low, low, medium, high
and very high to compare the suppliers. These terms are
matched with scale 4 of the Chen and Hwang method, as
shown in Fig. 5. Suppliers of product A are compared based on
decision makers’ preference as shown in Table 4.

The results of total score (mT(M)) computations are summarized
in Table 5.

We follow Saaty’s procedure for pairwise comparisons in AHP
(Saaty, 1980). As mentioned earlier, the scale of preference for
decision makers is limited from 1 to 9. So values of mT(M) have
been multiplied by 10 to fit into the scale. The new values of mT(M)

are replaced in Table 4 for suppliers of product A, and the results
are shown in Table 6.

The mathematical process begins by normalizing and finding
the relative weights for each matrix. The relative weights are
given by the right eigenvector (W) corresponding to the largest
eigenvalue (lmax), as

Aw ¼ lmaxW ð12Þ

If the pairwise comparisons are completely consistent, the
matrix A has rank 1, and lmax¼n. In this case, weights can be
obtained by normalizing any of the rows or columns of A. Since
each decision maker makes judgments individually, the consis-
tency check should be considered separately for each decision
maker. Decision maker(s) should revise their judgment about any
comparisons that are inconsistent. The consistency index is
computed in the following manner:

CI¼
ðlmax�nÞ

ðn�1Þ
ð13Þ

The consistency ratio is CR¼CI/RI . Random index (RI) is the
consistency index of a randomly generated reciprocal matrix from
the scale 1–9, with forced reciprocally. Saaty (1980) suggested
that if a consistency ratio is 0.1 or less, the consistency of the
judgment is acceptable for each matrix.

Saaty (2005) provides arguments as to why pairwise compar-
isons are fundamentally a new paradigm because it creates
relative scales from measurements based on an absolute scale
of real numbers for making the comparisons. Paired comparisons
imply dependence in the measurement of alternatives on the
quality and number of other alternatives with which they are
compared. Thus due to the dependence of the measurement of
each alternative on the other alternatives, the ranking of alter-
natives could change if new alternatives are added or old ones are
deleted. Contrast this with the traditional process of rating of
alternatives one at a time, which presupposes that rank should

Table 2
The scale of criteria ratings.

Very Poor (VP) 1rWo2

Poor (P) 2rWo3

Poor Medium (PM) 3rWo4

Medium (M) 4rWo6

Medium Good (MG) 6rWo7

Good (G) 7rWo8

Very Good (VG) 8rWo9
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Table 3
Suppliers’ performance (input).

Products Suppliers Decision

makers

Criteria

Quality W

(average)

Delivery W

(average)

Technology W

(average)

Price W

(average)

Location W

(average)

A 8 DM1 6 5 7 6 5 6 5 5.5 3 2.5

DM2 4 5 7 6 2

3 DM1 8 7.5 7 7.5 9 9 4 3 5 4.5

DM2 7 8 9 2 4

5 DM1 4 5.5 7 7.5 6 5.5 3 3.5 7 7.5

DM2 7 8 5 4 8

10 DM1 2 3 7 6 3 3.5 3 4 2 1.5

DM2 4 5 4 5 1

B 5 DM1 8 8.5 7 8 8 7.5 2 2.5 7 7.5

DM2 9 9 7 3 8

6 DM1 8 7 9 8 8 7 3 4.5 1 2.5

DM2 6 7 6 6 4

13 DM1 1 2 5 6.5 3 2 7 8 3 4

DM2 3 8 1 9 5

8 DM1 6 7 5 6 4 4.5 7 6 2 3

DM2 8 7 5 5 4

C 11 DM1 8 7 8 6.5 8 7 6 5.5 7 8

DM2 6 5 6 4 9

12 DM1 7 6 8 6.5 9 8 3 4.5 4 5

DM2 5 5 7 6 6

16 DM1 7 5.5 8 6.5 7 5.5 8 7 5 5.5

4 5 4 6 6

1 DM1 7 5.5 4 4.5 5 6 5 4.5 6 7

DM2 4 5 7 4 8

4 DM1 2 3.5 4 5 7 6 8 6.5 4 3.5

DM2 5 6 5 5 3

D 5 DM1 8 6.5 8 7.5 5 6 8 6.5 2 3

DM2 5 7 7 5 4

15 DM1 5 4 3 4 8 7 8 6.5 7 6

DM2 3 5 6 5 5

9 DM1 4 5 5 6.5 2 3.5 3 3.5 7 8

DM2 6 8 5 4 9

E 14 DM1 8 8.5 6 7 8 6.5 3 4 2 3

DM2 9 8 5 5 4

7 DM1 4 5 6 7 9 9 6 4.5 6 5

DM2 6 8 9 3 4

17 DM1 8 6.5 5 6.5 7 6.5 5 6.5 7 5.5

DM2 5 8 6 8 4

18 DM1 4 3.5 2 3.5 8 6 5 6 1 1.5

DM2 3 5 4 7 2

F 21 DM1 8 7.5 7 6 8 7 6 5.5 9 8

DM2 7 5 6 5 7

20 DM1 4 5 6 6.5 7 8 6 5 5 6

DM2 6 7 9 4 7

26 DM1 6 5 6 7 5 5.5 6 7 6 5.5

DM2 4 8 6 8 5

29 DM1 9 8 9 8 9 8.5 5 6 3 4

DM2 7 7 8 7 5

G 23 DM1 3 4 5 6 8 7 6 5 9 9

DM2 5 7 6 4 9

25 DM1 9 8 9 9 9 8 3 4 6 5

DM2 7 9 7 5 4

24 DM1 7 6 8 7 9 9 8 7 9 8

DM2 5 6 9 6 7

28 DM1 5 4 6 5.5 8 7 9 8 4 4

DM2 3 5 6 7 4

H 30 DM1 8 7 9 8 8 7 5 6 2 3

DM2 6 7 6 7 4

19 DM1 7 8 9 9 9 8 6 5 6 4

DM2 9 9 7 4 5

22 DM1 5 5 5 4 6 5.5 5 4 6 5

DM2 5 3 5 3 4

27 DM1 7 6 8 7 6 6 6 5 7 6

DM2 5 6 6 4 5

31 DM1 4 3 5 4 4 5 4 4 8 7

DM2 2 3 6 4 6
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not be influenced unless new criteria are added or judgments
changed. Saaty has illustrated and applied the pairwise compar-
ison for the analytic hierarchy process (AHP) approach (Saaty,
2008).

After calculating weights for all suppliers, the input and output
data are complete for use in the training step as shown in Table 7.

The next step is to train the model. Neurosolution software,
version 5, was used to train the model. This leading edge neural
network development software combines a modular, icon-based
network design interface with an implementation of advanced
learning procedures, such as conjugate gradients and backpropa-
gation through time. NeuroSolutions adheres to the so-called
local additive model. Under this model, each component can
activate and learn using only its own weights and activations, and
the activations of its neighbors (Neurosolution software). In order
to use the software, first input and output should be defined.
Second, the data should be classified into training and test sets.
Third, the network’s structure should be defined. Fourth,
the software trains the model and shows the performance of
the training set. Last, the test data set is used to evaluate the

performance of the design network. This software is very com-
prehensive and user friendly in comparison with other software.

Several scenarios were tested, and the structure was designed
as shown in Tables 8 and 9. In order to evaluate and validate the
results of the model, the mean square error (MSE) was used based

Fig. 5. Scale 4 of Chen and Hwang approach.

Table 4
Pairwise comparison for product A (DM1).

A 3 5 8 10

3 – Medium High Very High

5 – – Low Medium

8 – – – Low

10 – – – –

Table 5
Values of mT(M).

Very Low 0.09

Low 0.26

Medium 0.5

High 0.72

Very High 0.9

Table 6
Pairwise comparison for product A (DM1).

A 3 5 8 10

3 1 5 7.2 9

5 – 1 2.6 5

8 – – 1 2.6

10 – – – 1

Table 7
Input and output used in training.

Suppliers Input Output

Q D T P L Supplier

score

8 5 6 6 5.5 2.5 0.12

3 7.5 7.5 9 3 4.5 0.59

5 5.5 7.5 5.5 3.5 7.5 0.23

10 3 6 3.5 4 1.5 0.05

5 8.5 8 7.5 2.5 7.5 0.46

6 7 8 7 4.5 2.5 0.34

13 2 6.5 2 8 4 0.22

8 7 6 4.5 6 3 0.10

11 7 6.5 7 5 8 0.47

12 6 6.5 8 4.5 5 0.27

16 5.5 6.5 5.5 7 5.5 0.19

1 5.5 4.5 6 4.5 7 0.15

4 3.5 5 6 6.5 3.5 0.13

5 6.5 7.5 6 6.5 3 0.36

15 4 4 7 6.5 6 0.25

9 5 6.5 3.5 3.5 8 0.16

14 8.5 7 6.5 4 7 0.61

7 5 7 9 4.5 5 0.23

17 6.5 6.5 6.5 6.5 5.5 0.11

18 3.5 3.5 6 6 1.5 0.05

21 7.5 6 7 5.5 8 0.49

20 5 6.5 8 5 6 0.30

26 5 7 5.5 7 5.5 0.19

29 8 8 8.5 6 4 0.64

23 4 6 7 5 9 0.19

25 8 9 8 4 5 0.59

24 6 7 9 7 8 0.42

28 4 5.5 7 8 4 0.28

30 7 8 7 6 3 0.44

19 8 9 8 5 4 0.61

22 5 4 5.5 4 5 0.11

27 6 7 6 5 6 0.48

31 3 4 5 4 7 0.07

Table 8
MSE after training the model with 1 hidden layer.

Learning rate 0.1 0.5 1

Momentum 0.2 0.6 0.9 0.2 0.6 0.9 0.2 0.6 0.9

Hidden nodes 2 2 2 4 4 4 6 6 6

tanh 0.06 0.08 0.06 0.05 0.09 0.07 0.09 0.06 0.05

Sigmoid 0.04 0.09 0.08 0.01 0.07 0.05 0.06 0.07 0.08
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on the following function:

MSE¼

Pp
j ¼ 0

Pn
i ¼ 0ðdij�yijÞ

np

2

ð14Þ

where p is the number of output processing elements, n is the
number of exemplars in the data set, yij is the network output for
exemplar i (sample) at processing element j, and dij is the desired
output for exemplar i at processing element j.

The performance of the model based on one hidden layer with
the sigmoid transfer function showed the best results. The
learning rate and momentum values were 0.5 and 0.2, respec-
tively, with four hidden nodes. As earlier mentioned, there is no
formula to find an optimal solution for the best structure. Testing
all possible combinations of factors is a cumbersome task;
however, trial and error and rules of thumb could facilitate to
design the structure.

Fig. 6 shows the expected declining trend of mean square error
(MSE) during training. After training, eight suppliers are consid-
ered as test samples to be sure the model can create valid results.
The outputs of the model (scores) are compared with the scores of
suppliers from the pairwise comparison matrices, as shown
in Fig. 6. Fig. 7 depicts the test results.

If the test results prove that the model can predict the score of
suppliers within an acceptable range, the model can be used for
suppliers’ evaluation. In future, whenever a comparison among
the suppliers is needed, the model uses the input and ranks the
suppliers without decision makers’ judgment.

7. Improving the designed input and output

We designed a unique manner of input and output for the
neural network; however, there are several hidden issues in the
input and the output values. These issues can stimulate noise and
error in the training step and test results.

7.1. New input

To mitigate the impact of bias in the judgment of managers
about the suppliers’ performance evaluation, a meticulous

analysis is needed. The following solution is proposed to quantify
the performance of suppliers.

For each criterion, a function is defined to quantify suppliers’
performance. Historical and recent suppliers’ data are needed for
each individual criterion, and a function for each criterion is
defined to convert the raw data into input data for the model.
Over time, the vendor can update suppliers’ performance based
on their contracts. The suppliers’ performance is evaluated based
on the following criteria:

7.1.1. Quality

To measure the supplier’s performance, we defined the quality
history of supplier, which is the ratio of the defective parts to the
total number of parts supplied. The input function applied for
quality is

Q ¼

Pm
j ðdjÞ

tn
ð15Þ

where Q is the input function for quality, j is the delivery number
(batch) for a contract, j¼1,y, m, m is the number of deliveries or
batches for a contract, dj is the number of defective parts in
delivery number j, and tn is the total number of delivered products.

7.1.2. Delivery

Quantity and delay in delivery are the two parameters of
suppliers’ performance that are selected. Therefore, the delivered
quantity and punctuality can indicate the supplier performance.
The input function applied for delivery is

dq¼
Xm

j ¼ 1

ð qjp�qja

�� ��=qjpÞ=m ð16Þ

dt¼
Xm

j ¼ 1

ð tjp�tja

�� ��=tjpÞ=m ð17Þ

D¼ dqþdtð Þ ð18Þ

Table 9
MSE after training the model with 2 hidden layers.

Learning rate 0.1 0.5 1

Momentum 0.2 0.6 0.9 0.2 0.6 0.9 0.2 0.6 0.9

Hidden Nodes 2 2 2 4 4 4 6 6 6

tanh 0.07 0.06 0.04 0.07 0.09 0.08 0.09 0.06 0.05

Sigmoid 0.04 0.05 0.06 0.04 0.06 0.07 0.05 0.04 0.04

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

1 100 199 298 397 496 595 694 793 892 991

M
SE

Epoch

Fig. 6. MSE versus epoch.
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0.8
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Supplier Score (Prediction)

Fig. 7. Desired output and actual network output.
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where dq is the quantity evaluation function, qjp is the planning
quantity based on contract, qja is the actual delivered quantity, tjp

is the planning time of delivery based on contract, tja is the actual
delivery time, dt is the on time evaluation function, D is the input
function for delivery, j is the delivery number (batch) for a
contract j¼1,y,m, and m is the number of deliveries or batches
for a contract

7.1.3. Price

This criterion plays a critical role in decision making. In this
research, discount issues and types of payment are converted
together into a final offer price from supplier to buyer. Since price
is a tangible criterion for comparison, the price offered from a
supplier is considered for comparison.

7.1.4. Location

Since transportation cost (TC) is a tangible criterion for
comparison, the TCs of suppliers are considered for comparison.

7.1.5. Technology

The most common way to quantify the technology level of
a supplier is to evaluate the system based on several factors
(design, materials, machinery, process, etc.). In our case study, the
expert had a procedure to evaluate suppliers, and a supplier is
rated on a scale of 10 (low) to 100 (high).

7.2. New output

Since the concept of pairwise comparison is to compare
suppliers of a product with each other (and not how well a
suppliers’ performance is in comparison with an ideal supplier)
the values in the pairwise comparison are assigned to that set of
suppliers from 1 to 9. Therefore we face two issues:

(1) A group of candidate suppliers competing for a product are
being compared with each other. If the performance of the
best supplier in this group is not similar to the best suppliers
in the other groups for other products in the training set, the
output score for this group will not be very accurate for the
training purpose.

(2) If suppliers of a product have similar performance and they
are among the highly qualified suppliers from the pool of all
the suppliers’ products, in the pairwise comparison matrix,
low preference values are used (e.g. 3 out of 9) which result in
low values as output. However, we expect to have high output
values for high performing suppliers. In the following exam-
ple, the issues are clarified.

Consider eight suppliers for two products, W and Z (these are
not real products as a part of our case study). We created the
following pairwise comparison matrices, which show that sup-
plier ‘a’ is extremely better than supplier ‘d’ for product W and
supplier ‘e’ is extremely better than supplier ‘h’ for product Z, as
shown in Tables 10 and 11. After following the weight calculation
procedure, the output results are shown in Table 12.

The performance of suppliers ‘a’ and ‘e’ (input) based on the
defined criteria is shown in Table 12. Although both suppliers
have the same output scores, they have different input values for
NN model, which can create errors in the training pattern. This is
one of the issues that we face. In pairwise comparison, suppliers
are being compared based on each other. Being the best supplier
among a group of suppliers which are competing for a product
does not mean that it is absolutely the best or at the same level of
other high qualified suppliers in the training data set resulted
from several products. Therefore, creating an output set from
different products needs more attention.

To mitigate the impact of this issue on the training data, a
method is proposed as follows:

(1) Define a scale for the comparison of suppliers: In order to
increase the accuracy of output, a standard table for supplier
evaluation is created as shown in Table 13.

Table 10
Pairwise comparison for product W.

Product W a b c d

A 1 7 8 9

B – 1 2 4

C – – 1 2

D – – – 1

Table 11
Pairwise comparison for product Z.

Product Z e f g h

E 1 7 8 9

F – 1 2 4

G – – 1 2

H – – – 1

Table 12
Sample training set based on products W & Z.

Suppliers Input Output

Quality Delivery Technology Price Location Supplier

score

a 9 9 9 9 9 0.69

e 6 6 6 6 6 0.69

Table 13
Scale for supplier comparison with an ideal supplier.

The difference of the best

supplier with the ideal supplier

Score

The same 1

Low 1.2

Low to medium 1.4

Medium 1.6

Medium to high 1.8

High 2

Table 14
Comparison of supplier a with the ideal supplier.

Supplier a

Ideal supplier 1.6

Table 15
Revised pairwise comparison matrix for Product W.

Product W a b c d

a 1 7n1/1.6 8n1/1.6 9n1/1.6

b – 1 2n1/1.6 4n1/1.6

c – – 1 2n1/1.6

d – – – 1
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(2) Convert the comparison values based on the defined standard.
(3) Recalculate the outputs.

In each pairwise comparison matrix (for each product), the
supplier which has the highest score is selected and compared
with an ideal supplier. The scale is from 1 to 2 as shown
in Table 13, which means if performance of the selected supplier
is at the same level of the ideal supplier, the score is 1 and the

pairwise comparison is not changed, but if the selected supplier in
comparison with the ideal supplier is assigned any number more
than 1, the original pairwise comparison of suppliers should be
revised. The rationale behind the new scale is as follows.

First, converting the values based on the ratio should not
create a fraction value, for instance 1/3, which is not part of
pairwise comparison scale (1–9). In general, the lowest grade that
shows preference of one supplier to the other in pairwise
comparison is 2 out of 9 (1 out of 9 means no preference).
Therefore, having a ratio of 1/2 (it happens in an extreme case; in
comparison with the ideal supplier), makes the converted number
equal to 1 which is in the range of 1–9. Second, in a competitive
market, considering the performance of an ideal supplier more
than two times better than the best supplier for a product might
not be realistic. The following example illustrates the above steps.

The best supplier for product W, Table 10, is supplier ‘a’. In
general, it can be recognized by following the weight calculation
procedure. Comparing supplier ‘a’ with an ideal supplier, as
shown in Table 14, leads to the next step. Since the score is
1.6 as shown in Table 14, numbers in the original Table 10 should
be replaced, based on the ratio of 1/1.6 as shown in Table 15.

Now, the new outputs are calculated based on Table 15. These
changes overcome the aforementioned issue, and the new output
should improve the quality of the training data. To validate this
improvement, inputs and outputs are modeled based on the rede-
signed procedure. The new input and output values are shown in
Table 16.

After training the model and testing it for eight samples, MSE
values for training and test results depict a reduction after
redesigning input and output, as shown in Table 17. More details
are shown in Figs. 8 and 9 and Tables 18 and 19.

Table 16
New input and output values.

Suppliers Input Output

Q D T P L Supplier

score

8 0.009 0.12 70 0.25 0.11 0.10

3 0.007 0.06 90 0.40 0.22 0.52

5 0.014 0.07 65 0.35 0.13 0.19

10 0.031 0.14 50 0.29 0.25 0.04

5 0.005 0.05 80 0.44 0.13 0.41

6 0.012 0.03 75 0.31 0.11 0.26

13 0.056 0.11 70 0.22 0.17 0.19

8 0.012 0.18 60 0.27 0.18 0.08

11 0.01 0.09 75 0.25 0.09 0.42

12 0.014 0.17 85 0.29 0.16 0.23

16 0.019 0.22 55 0.19 0.15 0.14

1 0.021 0.19 60 0.27 0.11 0.11

4 0.039 0.21 60 0.23 0.19 0.08

5 0.012 0.08 60 0.25 0.18 0.34

15 0.024 0.13 70 0.22 0.13 0.21

9 0.011 0.01 55 0.34 0.09 0.12

14 0.003 0.04 90 0.29 0.11 0.53

7 0.014 0.15 90 0.31 0.16 0.18

17 0.021 0.19 65 0.24 0.15 0.1

18 0.078 0.28 60 0.23 0.25 0.03

21 0.01 0.09 80 0.27 0.09 0.46

20 0.013 0.11 90 0.26 0.13 0.26

26 0.023 0.06 60 0.22 0.15 0.13

29 0.005 0.03 90 0.24 0.17 0.63

23 0.009 0.12 80 0.28 0.08 0.14

25 0.004 0.01 85 0.35 0.16 0.54

24 0.009 0.08 70 0.23 0.09 0.34

28 0.018 0.19 70 0.2 0.17 0.21

30 0.009 0.05 80 0.26 0.18 0.32

19 0.003 0.01 85 0.29 0.17 0.56

22 0.039 0.13 55 0.37 0.16 0.06

27 0.013 0.08 70 0.31 0.13 0.40

31 0.038 0.13 55 0.33 0.11 0.04

Table 17
MSE comparison for both designs.

Training Test

First design 0.01 0.09

New design 0.002 0.01

0

0.05
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1 100 199 298 397 496 595 694 793 892 991
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Fig. 8. MSE versus epoch.

Table 18
MSE of training set.

Best network Training

Epoch # 1000

Minimum MSE 0.002
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Supplier Score (Prediction)

Fig. 9. Desired output and actual network output.
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8. Sensitivity analysis

A sensitivity analysis was performed to measure the relative
importance among the inputs of the neural model and illustrate
how the model output varies in response to variation of the input.
The network learning is disabled during this operation so that the
network weights are not affected. The first input is varied
between its mean and 10 standard deviations while all other
inputs are fixed at their respective means. The network output is

computed for 100 numbers of steps above and below the mean,
the number of discrete values used to calculate the output. This
process is repeated for each input individually. The model is not
trained for any data either over the maximum values or below
minimum values as shown in Table 20.

Plots showing the network output over the range of varied
input are shown in Figs. 10–14.

The maximum value for quality in the training data set is
0.078. Fig. 6 shows that by increasing the quality values for
suppliers, the model creates lower output values in quality axis;
the model can create an acceptable result for any future data
outside the training data range.

The maximum value for delivery in the training data set is
0.28. Fig. 11 shows the trend of varied delivery values. By
increasing the delivery values for suppliers, this graph shows an
expected drop in output values, but the graph shows that the
slope of this trend is almost flat after point 0.3. Thus, if the
delivery input values go beyond point 0.3, it may result in more
conservative decisions.

Fig. 12 shows that by increasing the technology values for
suppliers, the model results in a higher output value, and the
model can create acceptable results for data outside the training
data range.

Fig. 13 depicts that by increasing the price, the model results
in lower output values and the model can create an acceptable
result for any data outside the trained data range.

The relation of suppliers’ location and the output is shown
in Fig. 14. The trend shows that the greater the distance, more
qualified suppliers will be available.
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Fig. 10. Network output(s) for varied input quality.
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Fig. 11. Network output(s) for varied input delivery.

Table 20
Max. and min. values of training data set.

Quality Delivery Technology Price Location

Max. 0.078 0.28 90 0.44 0.25

Min. 0.003 0.01 50 0.19 0.08

Table 19
Test performance.

Performance Supplier score

MSE 0.0193

NMSE 0.4485

MAE 0.1070

Min. abs. error 0.0140

Max. abs. error 0.2779

r 0.7733
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Fig. 13. Network output(s) for varied input price.
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Table 21
A sample of input and output used in training.

Car model Input Output

Price Horsepower Cylinder Maintenance

cost (annually)

MPG Size Score

A 12,000 110 4 1000 34 Economy 12.4

B 14,400 125 4 1500 30 Medium 14

C 13,000 115 4 1300 28 Economy 13

D 19,900 176 6 1800 25 Full 13.6
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Fig. 12. Network output(s) for varied input technology.
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9. Another application

Several rental companies every year make decisions pertaining
to purchasing new cars or selling some of their used cars. To
make a purchase, several options are available. Based on several
criteria such as price, horse power, reliability, maintenance
cost, gas consumption rate, and size, decision makers make
their decision. The values for these criteria are given as input
and the scores or ranking of these cars are the output. Table 21
shows a sample of created input and output of the training
data set.

After considering a structure for the neural network model,
training and testing, the model can provide a ranking for the
future use. Next year, the input data from manufacturers is
given as input and the model assigns a score or rank to these
options.

10. Conclusion

The steps to make a decision making model based on the
neural networks were discussed with a couple of applications.
These steps are valid for any application. The model design (input
and output), performance history consideration, and prediction
capability make the proposed model unique in comparison with
other neural networks methods for solving multiple criteria
decision-making problems. Analyzing and improving the pairwise
comparison technique for mapping the managers’ preference in
the training section made our method exclusive. The vendor can
update the suppliers’ database information over time for future
decisions without managers’ judgment about the suppliers’
evaluation.

The model is trained and it learns to simulate the way the
decision makers’ judge and make decisions.

The condition of having valuable results of the model is to
have adequate valid data and well-designed structure. If the
training data set is a good sample of the population, the model
will provide useful results.

Appendix A. Fuzzy calculation

The following expressions show how the crisp number of a
fuzzy number M is obtained. Given a maximizing set and a
minimizing set as

mmaxðxÞ ¼
x, 0rxr1

0, otherwise

(
ðA1Þ

mminðxÞ ¼
1�x, 0rxr1

0, otherwise

(
ðA2Þ

The right score of M is determined as

mRðMÞ ¼ sup½mMðxÞ4maxðxÞ� ðA3Þ

The right score is the intersection of the line y¼x and the right
side of the number M. Also, support of a fuzzy set (sup) means
elements with nonzero membership grades.

The left score of M is determined as

mLðMÞ ¼ sup½mMðxÞ4mminðxÞ� ðA4Þ

Basically, the left score is the intersection of the line y¼1�x

and the left side of the fuzzy number M.
The total score of M was computed as

mTðMÞ ¼ mRðMÞ þ1�mLðMÞ

h i
=2 ðA5Þ

Now converting the fuzzy number to crisp number is per-
formed as follows:

mvery low ¼
1, xo0:1,
0:2�x

0:1 , xZ0:1

(
ðA6Þ

mlow ¼

x�0:1
0:15 , 0:1rxo0:25,

0:4�x
0:15 , 0:25rxo0:4

(
ðA7Þ

mmedium ¼

x�0:3
0:2 , 0:3rxo0:5,

0:7�x
0:2 , 0:5rxo0:7

(
ðA8Þ

mhigh ¼

x�0:6
0:15 , 0:1rxo0:75,

0:9�x
0:15 , 0:75rxo0:9

(
ðA9Þ

mvery high ¼

x�0:8
0:1 , 0:8rxo0:9,

1, xo0:9

(
ðA10Þ

In order to determine mT(M), mR(M) and mL(M) should be com-
puted. For instance, mT(M), for very low is

mR(Very Low)¼0:2�X=0:1¼ X. So X¼0.18 and mR(low)¼0.18,
mL(low)¼1, mT(M)¼[0.18+1�1]/2¼0.09.
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