Skip to main content
Organic-Vapor-Liquid-Solid Deposition with an Impinging Gas Jet
Journal of Applied Physics
  • Daniel W. (Daniel Wainwright) Shaw, Western Washington University
  • Kevin A. (Kevin Anthony) Bufkin, Western Washington University
  • Alexandr A. Baronov
  • Brad L. Johnson, Western Washington University
  • David L. Patrick, Western Washington University
Document Type
Publication Date

A method for rapid, mass-efficient deposition of highly crystalline organic films under near ambient conditions of pressure and temperature is reported based on delivery of an organic precursor via an impinging gas jet to a substrate coated by a thin liquid solvent layer. Films of the organic semiconductor tetracene were deposited by sublimation into a flow of argon carrier gas directed at an indium-tin-oxide/glass substrate coated by a thin layer of bis(2-ethylhexyl)sebecate, and growth was followed in situ with optical microscopy. A fluid dynamics model is applied to account for the gas phase transport and aggregation, and the results compared to experiment. The combination of gas jet delivery with an organic-vapor-liquid-solid growth mechanism leads to larger crystals and lower nucleation densities than on bare surfaces, with markedly different nucleation and growth kinetics. An explanation based on enhanced solution-phase diffusivity and a larger critical nucleus size in the liquid layer is proposed to account for the differences.

Subjects - Topical (LCSH)
Organic thin films--Effect of temperature on; Vapor-plating; Liquid crystalline solvents
Citation Information
Daniel W. (Daniel Wainwright) Shaw, Kevin A. (Kevin Anthony) Bufkin, Alexandr A. Baronov, Brad L. Johnson, et al.. "Organic-Vapor-Liquid-Solid Deposition with an Impinging Gas Jet" Journal of Applied Physics Vol. 111 Iss. 7 (2012)
Available at: