Skip to main content
Article
Infrared Lattice Vibrations and Dielectric Dispersion in Single-Crystal Cr2O3
Physical Review
  • David R. Renneke, Iowa State University
  • David W. Lynch, Iowa State University
Document Type
Article
Publication Date
4-1-1965
DOI
10.1103/PhysRev.138.A530
Abstract
Reflectivity measurements on single-crystal Cr2O3 have been made at room temperature in the wavelength range 1 to 45 μ. A classical oscillator analysis of the data has determined the frequencies, strengths and line-widths of the optical-lattice vibration modes with dipole moment vibrating parallel and perpendicular to the c axis. The modes vibrating parallel to the c axis occur at 538 and 613 cm−1. Those vibrating perpendicular to the c axis occur at 417, 444, 532, and 613 cm−1. Forbidden modes, believed to be caused by surface shear strains, have been observed. Vibration frequencies of long-wavelength longitudinal modes corresponding to the transverse vibration frequencies quoted above were calculated from the zeros of the real part of the dielectric constant. These values offer excellent experimental verification of the generalized Lyddane-Sachs-Teller equation derived by Kurosawa and by Cochran and Cowley. Comparison of the transverse-optic-mode frequencies of Cr2O3 with those of α−Al2O3 shows a considerable increase in force constants for the former, probably due to increased covalent bonding in Cr2O3.
Comments

This article is from Physical Review 138 (1965):A530, doi:10.1103/PhysRev.138.A530. Posted with permission.

Copyright Owner
The American Physical Society
Language
en
File Format
application/pdf
Citation Information
David R. Renneke and David W. Lynch. "Infrared Lattice Vibrations and Dielectric Dispersion in Single-Crystal Cr2O3" Physical Review Vol. 138 Iss. 2A (1965) p. A530 - A533
Available at: http://works.bepress.com/david_lynch1/120/