Skip to main content
Article
Understanding Task-driven Information Flow in Collaborative Networks
Proceedings of the 21st International Conference on World Wide Web Conference (WWW '12)
  • Gengxin MIAO, University of California at Santa Barbara
  • Shu TAO
  • Winnie CHENG
  • Randy Moulic
  • Louise E. Moser, University of California at Santa Barbara
  • David LO, Singapore Management University
  • Xifeng YAN, University of California at Santa Barbara
Publication Type
Conference Proceeding Article
Publication Date
4-2012
Abstract

Collaborative networks are a special type of social network formed by members who collectively achieve specific goals, such as fixing software bugs and resolving customers’ problems. In such networks, information flow among members is driven by the tasks assigned to the network, and by the expertise of its members to complete those tasks. In this work, we analyze real-life collaborative networks to understand their common characteristics and how information is routed in these networks. Our study shows that collaborative networks exhibit significantly different properties compared with other complex networks. Collaborative networks have truncated power-law node degree distributions and other organizational constraints. Furthermore, the number of steps along which information is routed follows a truncated power-law distribution. Based on these observations, we developed a network model that can generate synthetic collaborative networks subject to certain structure constraints. Moreover, we developed a routing model that emulates task-driven information routing conducted by human beings in a collaborative network. Together, these two models can be used to study the efficiency of information routing for different types of collaborative networks – a problem that is important in practice yet difficult to solve without the method proposed in this paper.

Keywords
  • Information Flow,
  • Collaborative Networks,
  • Social Routing
ISBN
9781450312295
Identifier
10.1145/2187836.2187951
Publisher
ACM
City or Country
Lyon, France
Additional URL
http://dx.doi.org/10.1145/2187836.2187951
Citation Information
Gengxin MIAO, Shu TAO, Winnie CHENG, Randy Moulic, et al.. "Understanding Task-driven Information Flow in Collaborative Networks" Proceedings of the 21st International Conference on World Wide Web Conference (WWW '12) (2012) p. 849 - 858
Available at: http://works.bepress.com/david_lo/78/