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A generalized Preisach description of hysteretic magnetotransport properties of half-metallic ferromagnets
�HMFs� is proposed. Assuming that the system consists of an assembly of elementary bistable hysterons
distributed in energy levels and with a range of possible energy barriers, the connection between irreversible
magnetic and transport properties of HMFs is found. Within this model, both the magnetization hysteresis and
resistivity hysteresis of HMFs can be described by a few simple assumptions common to description of
hysteresis phenomena leading to some fundamental relationship.

DOI: 10.1103/PhysRevB.77.180406 PACS number�s�: 75.60.Ej, 75.47.�m, 71.20.�b, 75.10.Lp

INTRODUCTION

Half-metallic ferromagnets �HMFs� are magnetic metals
with an unusual band structure in which only states of one
spin direction are present at the Fermi level, whereas there is
a gap in the density of states for the other spin direction �for
recent review, see Ref. 1�. That is, in HMFs only the elec-
trons �or holes� with spin, for example parallel of magneti-
zation, are conducting while the charge carriers with the op-
posite spin direction are localized. There are several classes
of potentially half-metallic materials, such as the hole-doped
manganites La1−xAxMnO3 �with divalent cation A�, the
double perovskites �Sr2FeMoO6�, the �semi�Heusler alloys
�NiMnSb�, magnetite �Fe3O4�, rutile �CrO2�, and others.
Such materials are major components in devices of micro-
electronics, spin-electronics, and computing �for recent re-
view, see Ref. 2� and they have received significant interest
from researchers in the past decade.3–8 However, up to now a
detailed understanding of the relation between irreversible
magnetic and transport properties of these materials has been
lacking. The proposed relations between magnetization and
resistivity7–11 are actually based on the lowest-order ap-
proaches and are valid only for a restricted range of param-
eters. The phenomenon has eluded a complete explanation
and it is still a challenge to explain whether hysteresis in
magnetization and hysteresis in magnetoresistivity of HMFs
are mutually independent.

On thermodynamic grounds, hysteresis is a consequence
of the fact that, when the system is not able to reach the
thermodynamic equilibrium of a ground state during the time
of the experiment, the system will remain in a temporary
local minimum of its free energy, and its response to external
actions will become history-dependent.12 Recently, particular
attention has been focused on the description of combined
hysteresis and thermal relaxation in magnetic materials.13,14

The working hypothesis is that the free energy of the system
can be decomposed into the superposition of simple free-
energy profiles, each characterized by two energy minima
separated by a barrier.

Generalizing these ideas, the connection between magne-
toresistance hysteresis and magnetization hysteresis in HMF
perovskite oxides is proposed in this Rapid Communication.

By assuming that the system consists of an assembly of el-
ementary bistable units �magnetic hysterons� with a distribu-
tion of energy levels and energy barriers, a description of the
hysteretic magnetoresistivity of HMFs is obtained. Direct re-
lationships between magnetization hysteresis, M�H ,T�, and
magnetoresistivity hysteresis �or magnetoresistance�,
R�H ,T�, of HMFs are obtained. Together with the predicted
hysteretic response, the model is able to predict some spe-
cific relations in limiting cases between magnetization and
magnetoresistance which have been experimentally observed
for doped manganese perovskites.

MODELING OF MAGNETORESISTIVE HYSTERESIS

The widely used Preisach model12,15 assumes that the hys-
teretic system consists of a large number of elementary in-
teracting units called hysterons. Each unit is described by an
elementary rectangular hysteresis loop, which has two field
parameters, i.e., switching fields hA and hB, with hA�hB. A
probability distribution function P�hA ,hB�, which describes
the probability density of the elementary units to have
switching fields hA, hB, is assumed to be known. Under vary-
ing external magnetic field H, the magnetization M of the
unit will depend on the previous history of field changes.
This is usually written using the operator ��H ;hA ,hB�, which
may be �1 depending on the relation between H and hA, hB.
The magnetization may be calculated knowing the history of
variation of the magnetic field as

M�H� = MS� �
b�H�

��H;hA,hB�P�hA,hB�dhAdhB, �1�

where MS is the saturation magnetization, and the path b�H�
reflects the evolution of the magnetic field H over time t and
divides the whole plane hA�hB in two regions: in the first
region, all elementary units are switched up and have the
magnetization “+1,” and in the second all units are switched
down and have the magnetization “−1.” We will assume that
for the purposes of this calculation, the temperature is not too
high, so that the thermal activation effects can be neglected.

We consider that the hysteretic system under study can be
represented as an assembly of magnetic “+1” and “−1” hys-
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terons distributed in real space. The conductivity between
two neighboring magnetic hysterons depends on many fac-
tors. In order to clarify how magnetic order can determine
the transport properties of the system, the dependence of
electron scattering on the relative orientation �parallel or an-
tiparallel� of the magnetic moments of these neighboring
hysterons only is considered. The description of the effect of
magnetic order is based on the assumption that the electron
scattering, which takes place at the interfaces between the
magnetic clusters, depends only on the electron spin direc-
tion. This approach is very reasonable for HMFs, where it is
known that electron scattering drastically depends on the
electron spin direction.

So, we can consider a given magnetic hysteron distribu-
tion as a kind of transport resistor network. Following the
concept behind the Preisach model, we consider a superpo-
sition of an infinite number of relay operators Rb�H�
=Rb�H��H ;hAi ,hBi ; . . . ;hAi+k ,hBi+k�—the simplest conductiv-
ity path. The switching fields �hAi ,hBi� are the corresponding
fields for the ith magnetic hysteron in the Preisach plane.
Each Rb�H� is weighted by a probability function
P�hAi ,hBi ; . . . ;hAi+k ,hBi+k�, which is a function introduced in
this Rapid Communication, the Preisach conductivity func-
tion, which describes the probability of k magnetic hysterons
being involved in a conducting path. As a result, when the
hysteresis is rate-independent, we obtain the following ex-
pression for an “irreversible” conductivity:

�irr�H� = �s�
k=1

� � �
b�H�

dhAidhBi

�� �
b�H�

dhAi+kdhBi+kP�hAi,hBi; . . . ;hAi+k,hBi+k�

�R�H;hAi,hBi; . . . ;hAi+k,hBi+k� , �2�

where �s is the saturation conductivity of a hysteron and
b�H� is the Preisach memory function, which is the same as
for magnetic hysteresis. The correlation between magnetic
and magnetoresistivity hysteresis can now be described by a
correlation between the Preisach magnetic function
P�hA ,hB� and the Preisach conductivity function
P�hAi ,hBi ; . . . ;hAi+k ,hBi+k�.

An important characteristic of the mixed-valence
manganese perovskites exists that gives a physical back-
ground to suggest the fundamental relation between the
conventional Preisach magnetic function, P�hA ,hB�, and
the newly proposed Preisach conductivity function,
P�hAi ,hBi ; . . . ;hAi+k ,hBi+k�, i.e., between the magnetization
hysteresis and the magnetoresistivity hysteresis. Namely,
within the double-exchange interaction model5–7 the itinerant
charge carriers �electrons or holes� provide both the magnetic
interaction between nearest Mn3+-Mn4+ ions and the materi-
al’s electrical conductivity. Due to the short mean free path
�that is typically the distance of about a lattice parameter�,
the charge carrier probes the magnetization on a very short
length scale. As a result, for these systems a strong interplay
between local magnetic order and macroscopic electrical re-
sistance is expected.

Following the picture of a half-metallic magnetic mate-
rial, we will suppose that the electron spin direction is par-
allel to the magnetic moment of the initial hysteron �hAi ,hBi�
and may be parallel or antiparallel to the direction of the
magnetic moment of the final hysteron �hAj ,hBj�. If parallel,
the electron experiences weak scattering and hence a low
resistance R↑↑ occurs �which we term the “conducting
state”�. If antiparallel, the electron experiences strong scat-
tering and hence a high resistance, R↑↓ occurs �which we
term the “resistive state”�. As an example, in Fig. 1, the
resistive state arises in the field region hAi�H�hBj; hyster-
esis is possible for the regions of fields hBi�H�hAi and
hBj �H�hAj; for other magnetic field values, the conductiv-
ity hysteron is in the conductive state.

So, in general, one can give the following
conceptual interpretation of the conductivity function
P�hAi ,hBi ; . . . ;hAi+k ,hBi+k�: This distribution function de-
scribes the probability of k magnetic hysterons being in-
volved in a conducting path. This probability is proportional
to both �i� the probability of the �hAi ,hBi�¯ �hAi+k ,hBi+k�
magnetic hysteron being switched simultaneously and �ii� the
probability of the hysterons in a virtual switching-fields
plane to be nearest neighbors in real space. In the approxi-
mation of independent hysterons, the first probability is sim-
ply a product of the Preisach magnetic functions P�hAi ,hBi�;
the second probability is determined by the sample’s con-
struction. Depending on the structure of the Preisach conduc-
tivity function P�hAi ,hBi ; . . . ;hAi+k ,hBi+k�, Eq. �2� is able to
describe the resistive state in magnetic materials for any
range of the system parameters. The wiping-out property12

�which is inherited in this model�, the classical congruency
property,12 as well as thermodynamics aspects of hysteresis
for the system under consideration will be discussed in detail
elsewhere.

In order to make qualitative predictions about the rela-
tions between the magnetization and magnetoresistivity, we
consider the two limiting cases of the high-field and low-
field conductivity behavior.

(a) High-field limit M→MS. In the case of high magnetic
alignment from grain to grain �low magnetic disorder�, the
isolated metallic regions are clustered and a global electrical

FIG. 1. Two magnetic hysterons �hAi ,hBi� and �hAj ,hBj� produce
conductivity hysteron. Conductivity hysteron has two states with
minimum and maximum conductivity with the switching fields co-
inciding with the magnetic hysteron.
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connectedness can be achieved. All possible current trajecto-
ries through magnetic hysterons should be taken into ac-
count. That is, the function P�hAi ,hBi ; . . . ;hAi+k ,hBi+k� is then
a multiple function of the probabilities P�hA ,hB� of any par-
ticular magnetic hysteron being involved in a conducting
path,

P�hAi,hBi;hAi+1,hBi+1� = c1P�hAi,hBi�P�hAi+1,hBi+1� ,

P�hAi,hBi;hAi+1,hBi+1;hAi+2,hBi+2�

= c2P�hAi,hBi�P�hAi+1,hBi+1�P�hAi+2,hBi+2� ,

P�hAi,hBi; . . . ;hAi+k,hBi+k� = ckP�hAi,hBi� . . . P�hAi+k,hBi+k� ,

�3�

where c1 ,c2 , . . . ,ck are constants, which cannot be ignored.
For the given current trajectory, any mutual permutations of
the hysterons are physically indistinguishable and have to be
taken into account once, i.e., ck=const /k!, where “const” is
determined by the distribution of the hysterons in real space.
From Eq. �2�, we then obtain �irr�H� /�s�exp�M�H� /MS�,
and therefore, in terms of resistivity
R�H� /R�0��exp�−M�H� /MS�. A detailed study indicates
that for good quality crystals, the resistivity and magnetiza-
tion are related by the exponential dependence over a wide
temperature range all the way up to the Curie temperature7,16

�see Fig. 4 in Ref. 7 and Fig. 4 in Ref. 16�.
(b) Low-field case M→0. In the limit of low magnetic

alignment from grain to grain �strong magnetic disorder�, the
tunneling of carriers is mainly within a single pair of adja-
cent domains. The global electrical connectedness can be
neglected and the magnetoresistance is associated with the
mutual orientation of magnetization of neighboring grains.
The likelihood of a conducting path involving a larger num-
ber of magnetic hysterons becomes negligibly small. The
function P�hAi ,hBi ; . . . ;hAi+k ,hBi+k� can then be reduced to
the probability of two magnetic hysterons �hAi ,hBi� and
�hAj ,hBj� being involved in a conducting path,

P�hAi,hBi; . . . ;hAi+k,hBi+k� ⇒ P�hAi,hBi;hAj,hBj�

= c1P�hAi,hBi�P�hAj,hBj� . �4�

Simple calculations lead to the following relation between
magnetization hysteresis M�H� and conductivity hysteresis
��H�:

�irr�H�/�S

= const�� �
b�H�

dhAidhBi��H;hAi,hBi�P�hAi,hBi�	2

� �M�H�/MS�2 �5�

or in terms of resistivity R�H� /R�0�=1−const�M�H� /MS�2.
Indeed, the data obtained on a series of manganite oxides
demonstrate that in low magnetic field, the electric resistivity
and the magnetization can be described by Eq. �5� �see Fig. 3
in Ref. 10�.

Based on the relationships introduced above, we can con-
struct both magnetic M�H� and magnetoresistive R�H� hys-
teresis loops if the proper probability function �Preisach

magnetic function� is known. As an example, Fig. 2�a� shows
magnetic hysteresis loops calculated by Eq. �1� when the
Preisach function is specified as a Gaussian-Gaussian
distribution,12

(a)

(b)

(c)

FIG. 2. �Color online� �a� Magnetization as a function of mag-
netic field curves constructed using classical Preisach model. �b�
Resistivity as a function of magnetic field curves constructed using
the proposed model. The following parameters for �a� and �b� were

taken: �C=300, �I=300, h̄C=100, and the Preisach function was
properly normalized. �c� Experimental resistivity as a function
of magnetic field measured on La0.7Sr0.3MnO3 samples at 77 K
�Ref. 17�.
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P�hC,hI� = exp�−
hI

2

2�I
2	exp�−

�hC − h̄C�2

2�C
2 	 , �6�

where hC= �hA−hB� /2 is a coercive field and
h1= �hA+hB� /2 is an interaction field of the hysteron �hA ,hB�,
�C and �I are standard deviations of the coercive field and

interaction field distributions, h̄C is the average for the coer-
cive field distribution, and the Preisach function is properly
normalized. Figure 2�b� shows magnetoresistive hysteresis
curves in a case in which the global electrical connectedness
can be neglected and the magnetoresistance is associated
with magnetization of neighboring grains. In this case, Eq.
�5� can be used. The magnetoresistive hysteresis curves in
Fig. 2�b� qualitatively reproduce the experimentally obtained
curves on samples of compacted nanoparticles of
La0.7Sr0.3MnO3 shown in Fig. 2�c�.17

The low-field case �M→0� opens �at least in principle� an
interesting possibility to restore the distribution of the Prei-
sach hysterons in real space. Indeed, from magnetic measure-
ments one can easily restore the Preisach function P�hA ,hB�.
Then, fitting the model resistivity loops, such as in Fig. 2�b�,
to the experimental ones, such as in Fig. 2�c�, one can restore
the prefactor in Eq. �5�. The last is directly the probability of

the hysterons in a virtual switching-fields plane to be nearest
neighbors in real space. This issue will be discussed in detail
elsewhere.

In conclusion, a phenomenological approach to the de-
scription of both magnetization hysteresis and magnetoresis-
tivity hysteresis is proposed on the basis of a few simple
assumptions. Both types of hysteresis are interpreted assum-
ing that the system consists of an assembly of elementary
bistable units �hysterons�, with a distribution of energy levels
and energy barriers. The results obtained here provide a ther-
modynamic framework for the study of the connection be-
tween irreversible magnetic M�H ,T� and resistive R�H ,T�
properties of HMFs. For systems like HMFs, we are able to
predict the analytical dependence between different hyster-
etic properties of the system, such as Eqs. �3� and �4�, based
on the existence of unique distribution P�hC ,hI�, which can
be restored from magnetic measurements �see, e.g., Ref. 18�.

ACKNOWLEDGMENTS

This research was supported by Cardiff University under
the Visiting Fellow Scheme and by NAS of Ukraine under
the Program “Nanostructured systems, Nanomaterials, Nano-
technologies.”

1 J. M. D. Coey, Materials for Spin Electronics, in Spin Electron-
ics, edited by M. Ziese and M. J. Thornton �Springer, Berlin
2001�.

2 J. F. Gregg, I. Perej, E. Jouguelet, and C. Dennis, J. Phys. D 35,
R121 �2002�.

3 S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh,
and L. H. Chen, Science 264, 413 �1994�.

4 N. D. Mathur, G. Burnell, S. P. Isaac, T. J. Jackson, B.-S. Teo, J.
L. MacManus-Driscoll, L. F. Cohen, J. E. Evetts, and M. G.
Blamire, Nature 387, 266 �1997�.

5 J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167
�1999�.

6 E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 �2001�.
7 M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 �2001�.
8 M. Ziese, Rep. Prog. Phys. 65, 143 �2002�.
9 J. O’Donnell, M. Onellion, M. S. Rzchowski, J. N. Eckstein, and

I. Bozovic, Phys. Rev. B 54, R6841 �1996�.
10 J. Fontcuberta, B. Martinez, A. Seffar, S. Piñol, J. L. Garcia-

Muñoz, and X. Obradors, Phys. Rev. Lett. 76, 1122 �1996�.
11 S. L. Yuan, Z. Y. Li, W. Y. Zhao, G. Li, Y. Jiang, X. Y. Zeng, Y.

P. Yang, G. Q. Zhang, F. Tu, C. Q. Tang, and S. Z. Jin, Phys.
Rev. B 63, 172415 �2001�.

12 G. Bertotti, Hysteresis in Magnetism �Academic, New York,
1998�.

13 V. Basso, C. Beatrice, M. LoBue, P. Tiberto, and G. Bertotti,
Phys. Rev. B 61, 1278 �2000�.

14 R. M. Roshko and C. A. Viddal, Phys. Rev. B 72, 184422
�2005�.

15 F. Preisach, Z. Phys. 94, 277 �1935�.
16 M. F. Hundley, M. Hawley, R. H. Heffner, Q. X. Jia, J. J. Neu-

meier, J. Tesmer, J. D. Thompson, and X. D. Wu, Appl. Phys.
Lett. 67, 860 �1995�.

17 M. M. Savosta, V. N. Krivoruchko, I. A. Danielenko, V. Yu.
Tarenkov, T. E. Konstantinova, A. V. Borodin, and V. N.
Varyukhin, Phys. Rev. B 69, 024413 �2004�; Yu. F. Revenko,
M. M. Savosta, V. N. Krivoruchko, and I. A. Danielenko �un-
published�.

18 Ch. R. Pike, A. P. Roberts, and K. L. Verosub, J. Appl. Phys. 85,
6660 �1999�.

KRIVORUCHKO, MELIKHOV, AND JILES PHYSICAL REVIEW B 77, 180406�R� �2008�

RAPID COMMUNICATIONS

180406-4


	Iowa State University
	From the SelectedWorks of David C. Jiles
	May, 2008

	Relationship between hysteretic behavior of magnetization and magnetoresistance in half-metallic ferromagnets
	tmpr4ZxQ4.pdf

