Skip to main content
Article
Biorenewable polymer composites from tall oil-based polyamide and lignin-cellulose fiber
Journal of Applied Polymer Science
  • Kunwei Liu, Iowa State University
  • Samy A. Madbouly, Iowa State University
  • James A. Schrader, Iowa State University
  • Michael R. Kessler, Washington State University
  • David A. Grewell, Iowa State University
  • William R Graves, Iowa State University
Document Type
Article
Publication Version
Accepted Manuscript
Publication Date
12-20-2015
DOI
10.1002/app.42592
Abstract

Tall oil-based polyamide (PA) was blended with lignin-cellulose fiber (LCF), an inexpensive, highly abundant byproduct of the pulp and paper industries, to produce environmental-friendly thermoplastic biocomposites. The effects of the concentration of LCF on the thermal, rheological, and mechanical properties of the composites were studied using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), rheological testing, and mechanical testing. The morphologies of the composites were investigated using scanning electron microscopy (SEM). The incorporation of LCF did not change the glass relaxation process of the polyamide significantly. Results from rheological testing showed that the complex viscosity and shear storage modulus were increased by LCF. Both the modulus and strength increased with increasing LCF content; however, LCF substantially reduced the tensile elongation of the composites. The thermal stability of the composites was strongly influenced by the concentration of LCF. The onset of the degradation process shifted to lower temperatures with increasing LCF content. We conclude that LCF has strong potential for use as filler that is compatible with tall oil-based polyamide. Adding LCF to form PA-LCF composites can lower material costs, reduce material weight, and increase strength and rigidity compared to neat PA. Composites of PA-LCF could serve as sustainable replacements for petroleum plastics in many industrial applications and would provide additional opportunities to utilize LCF, a highly abundant biorenewable material.

Comments

This is the peer reviewed version of the following article: Liu, Kunwei, Samy A. Madbouly, James A. Schrader, Michael R. Kessler, David Grewell, and William R. Graves. "Biorenewable polymer composites from tall oil‐based polyamide and lignin‐cellulose fiber." Journal of Applied Polymer Science 132, no. 48 (2015)., which has been published in final form at 10.1002/app.42592. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Posted with permission.

Copyright Owner
Wiley Periodicals, Inc.
Language
e
File Format
application/pdf
Citation Information
Kunwei Liu, Samy A. Madbouly, James A. Schrader, Michael R. Kessler, et al.. "Biorenewable polymer composites from tall oil-based polyamide and lignin-cellulose fiber" Journal of Applied Polymer Science Vol. 132 Iss. 48 (2015)
Available at: http://works.bepress.com/david_grewell/26/