Skip to main content
Presentation
Ultrasonic Pretreatment of Corn Slurry in Batch and Continuous Systems
Agricultural and Biosystems Engineering Conference Proceedings and Presentations
  • Melissa Tabada Montalbo-lomboy, Iowa State University
  • Samir Kumar Khanal, University of Hawaii at Manoa
  • Johannes van Leeuwen, Iowa State University
  • D. Raj Raman, Iowa State University
  • Larson Dunn, Jr., Danisco US, Inc.
  • David A. Grewell, Iowa State University
Document Type
Conference Proceeding
Conference
2009 ASABE Annual International Meeting
Publication Date
6-1-2009
DOI
10.13031/2013.27368
Geolocation
(39.5296329, -119.8138027)
Abstract
The effects of ultrasonication of corn slurry, on particle size distribution and enzymatic hydrolysis was studied for the dry-grind mill ethanol industry. Two independent ultrasonic experiments were conducted at a frequency of 20 kHz; in batch and continuous systems. The ground corn slurry (33% m/v) was pumped at flow rates 10-28 L/min in continuous flow experiments, and sonicated at constant amplitude (20µmpeak-to-peak(p-p)). Ultrasonic batch experiments were conducted at varying amplitudes of 192-320µmp-p. After ultrasonication, StargenTM001 enzyme was added to the samples and a short 3h hydrolysis followed. The treated samples were found to yield 2-3 times more reducing sugar compared to the control (untreated) samples. In terms of energy density, the batch ultrasonic system was found to deliver 25-times more energy than the continuous flow systems. Although the experiments conducted in continuous system released less reducing sugar than the batch system, the continuous system was more energy efficient. The particle size of the sonicated corn slurry (both batch and continuous) was reduced relative to the controls (without treatment). The reduction of particle size was directly proportional to the energy input during sonication. The study suggests that both batch and continuous flow ultrasonic systems enhances enzymatic hydrolysis yield, reduces particle size of corn slurry and could be a potential effective pretreatment for corn slurry.
Comments

This is an ASABE Meeting Presentation, Paper No. 097420.

Copyright Owner
American Society of Agricultural and Biological Engineers
Language
en
Citation Information
Melissa Tabada Montalbo-lomboy, Samir Kumar Khanal, Johannes van Leeuwen, D. Raj Raman, et al.. "Ultrasonic Pretreatment of Corn Slurry in Batch and Continuous Systems" Reno, NV(2009)
Available at: http://works.bepress.com/david_grewell/13/