Skip to main content
Presentation
Additive Manufacturing of Embedded Sensors for Fluidic Properties Determination in Porous Media
Idaho Conference on Undergraduate Research
  • Aemilia Fastabend, Boise State University
  • Josh Eixenberger, Boise State University
  • Fereshteh Rajabi Kouchi, Boise State University
  • Hailey Burgoyne, Boise State University
  • Tony Varghese, Boise State University
  • Brian Jaques, Boise State University
  • David Estrada, Boise State University
Faculty Mentor Information
Dr. Josh Eixenberger (Mentor), Boise State University
Abstract

Porous media is used in many industries with applications ranging from chemical catalytic reactors to underground hydrogen storage. Although tremendous research has been done on fluid flow through porous media, there remains a need to develop robust embedded sensors to actively monitor physiochemical properties that affect the myriad applications. Additive manufacturing (AM) is a promising method for the development and fabrication of sensors, due to its ability for rapid prototyping and compatibility with conformal surfaces. However, the industry is limited by the number of commercially available inks, especially for 2D nanomaterials like graphene and MXenes. The novel properties of these materials make them particularly attractive for the development of new sensors, so advancements in AM of 2D inks has the potential to greatly expand the industry. Herein, we examine optimizations in manufacturing of gold, graphene, and MXene nanomaterial inks, AM methods, and production of prototypes for embedded sensors in porous media applications.

Citation Information
Aemilia Fastabend, Josh Eixenberger, Fereshteh Rajabi Kouchi, Hailey Burgoyne, et al.. "Additive Manufacturing of Embedded Sensors for Fluidic Properties Determination in Porous Media"
Available at: http://works.bepress.com/david_estrada/113/