
David A Bainbridge
Stephen Mitchell
Sustainable Agriculture for California: A Guide to Information

David Bainbridge and Steve Mitchell
Sustainable Agriculture Information Project
Dry Lands Research Institute
University of California, Riverside, CA, 92521
August, 1988

prepared with support from the University of California Sustainable Agriculture Research and Education Program, the Librarians Association of the University of California, and the Dry Lands Research Institute, University of California, Riverside

1.0 Introduction

Sustainable agriculture is often described as farming that is ecologically sound and economically viable. It may be high or low input, large scale or small scale, a single crop or mixed farm, and use either organic or conventional inputs and practices.

The development of improved crops, cropping systems, irrigation, farm management, and marketing will be needed to make California farms more profitable and sustainable. These farms will typically rely more on biological resources and management than on non-renewable inputs of energy and chemicals. The foundation of a sustainable farm system is a comprehensive understanding of the land, the farm resources and operations, and potential short and long term markets.

There is a great deal of information that can be of value in helping farmers, extension agents, and researchers improve the sustainability of California agriculture. Unfortunately, this information is widely dispersed, uneven in quality, and some of the best work is in research reports and publications that were printed in limited quantities and are unavailable through conventional sources.

This guide was written to help farmers, extension workers, information specialists, and researchers find the information they need.

1.1 Acknowledgements

This guide was written by David Bainbridge, information specialist, Dry Lands Research Institute, and Steve Mitchell, agricultural librarian, U.C. Riverside, with assistance from Betty Pennington.

We have been helped immeasurably by the support and assistance of many farmers, researchers, and information specialists in California and around the world. They have shared their time, resources, and commitment to sustainable agriculture.

We would also like to acknowledge the support of Dr. Diana Freckman and Dr. Wes Jarrell, of DLRI, and Dr. Jill Auburn and Dr. Bill Liebhardt, of SAREP. Thanks also to our advisory group whose comments were timely and helpful.
The system of agriculture... if the epithet can be applied to it, which is in use in this part of the United States is as unproductive to the practitioners as it is ruinous to the landholders. Yet it is pertinaciously adhered to. To forsake it; to pursue a course of husbandry which is altogether different and new to the gazing multitude, ever averse to novelty in matters of this sort and much attached to their old customs, requires resolution, and without a good practical guide may be dangerous.

George Washington, 1783

1.2 Table of Contents

1.0 Introduction
1.1 Acknowledgements
1.2 Table of Contents
2.0 Sources of information
2.1 Libraries
   2.11 Libraries with an agricultural focus
   2.12 Interlibrary loan
2.2 Data bases
   2.21 Recent sources covering ag data bases
   2.22 The data bases
   2.23 Data base vendors
3.0 Sustainable agriculture organizations
   3.1 California
   3.2 National
   3.3 Western U.S.
   3.4 Midwestern U.S.
   3.5 Eastern U.S.
   3.6 Southern U.S.
   3.7 International
4.0 Sources of books and written information
5.0 Abstract /index journals and books
6.0 Bibliographies
7.0 Directories
8.0 Periodicals
9.0 Books
   9.1 Overview
   9.2 Marketing
   9.30 Pest management
   9.30.1 Soil solarization
   9.31 Weed management
   9.31.1 Weeder geese
   9.31.2 Flame weeding
   9.40 Soil management
   9.41 Biological nitrogen fixation
   9.41.1 Ley farming
   9.42 Green manure and cover crops
   9.50 Water management
      9.50.1 Improving irrigation
   9.60 Farming systems
   9.61 Crop rotations and cropping systems
      9.61.1 Cropping systems and soil
   9.62 Agroforestry
   9.63 Range management
   9.64 Gardening
   9.65 Traditional farming systems
      9.65.1 Ridged fields
   9.66 New crops
   9.67 On-farm research
   9.70 Soil conservation
   9.71 Conservation tillage
   9.76. Environmental impact
   9.79 Environmental restoration
   9.80 Microclimate
   9.81 Windbreaks and shelterbelts
   9.90 Ag engineering and equipment
   9.99 General information on sustainable agriculture
2.0 Sources of information

Finding the information that is needed to solve a farm problem or make a particular farm operation more sustainable and profitable is often challenging because each case and each year provides a unique set of conditions of soil, climate, and biological factors.

Some of the better sources of information include: U.C. Cooperative Extension personnel, members of other State and Federal agencies, such as the California Dept. of Food and Agriculture and the Federal Soil Conservation Service; farmers and farm organizations; faculty members at the Univ. of California, state and private universities and colleges; private consultants; librarians and information specialists; suppliers; information services, such as Appropriate Technology Transfer for Rural Areas (see 3.2); and books and periodicals.

The U.C. Cooperative Extension County Farm Advisor in your area (listed in the telephone book under County Government Offices) should be the first contact for production related information. If necessary they may call upon appropriate specialists and programs within the University such as the Sustainable Agriculture Research and Education Program, the Integrated Pest Management Project, or the Small Farm Center.

The Agroecology Program at U.C. Santa Cruz, and the Water Resources Center and the Dry Lands Research Institute at U.C. Riverside may also be able to provide assistance. It is best to write as some of these groups do not have the resources to respond to inquiries by phone. Be patient.

Faculty members at the U.C. and state college campuses may also be very helpful, but are often equally short of time and resources. The U.S.D.A. CRIS data base (see 2.21) may help you find someone who is already working on your subject.

Books and magazines are useful for the background and knowledge needed to identify and test new management practices and crops. Bibliographies or electronic data bases will help you find useful information in the library more quickly.

2.1 Libraries

In many cases you may wish to supplement these sources of information with library searches of your own. Your local librarian or the librarians within the U.C. system and in other library systems can help you find needed information. An agricultural or natural resources librarian is usually the best contact for a person interested in delving into the literature for research reports and detailed information. They can often tell you which faculty members are working on subjects you are interested in and which books or journals best cover your topic.

2.11 Libraries with an agricultural focus

*University of California*
U.C. Berkeley, Natural Resources Library [NATR] (415) 642-4493
Forestry Library [FORE] (415) 642-2936
U.C. Davis, Shields Library, Bio-Agriculture Dept. [MAIN] (916) 752-1203
U.C. Riverside, Bio-Agricultural Library [BIOAG] (714) 787-3238
Call numbers and libraries are provided in this publication for books in the U.C. system. Browsing near these numbers may help you find other books with relevant information. Books not entered in the U.C. computer system, MELVYL, may not be shown. Campus Codes: B= Berkeley; D= Davis; I= Irvine; LA= Los Angeles; R= Riverside; SB= Santa Barbara; SC= Santa Cruz; SD= San Diego. You may be able to obtain a U.C. library card by joining the Friends of the Library of the campus nearest you.

California State Universities
California Polytechnic State Univ. San Luis Obispo, Robt. E. Kennedy Library (805) 756-2029
California State Univ. Fresno, Henry Madden Library (209) 294-2403.
California State Polytechnical Univ. Pomona, Library (714) 869-3090
California State Univ. Chico, Meriam Library (916) 895-5862.
Humboldt State Univ., Library (707) 826-3441.
California State Univ., Stanislaus Library (209) 667-3232.
California State College, Bakersfield Library (805) 833-3042.

2.12 Interlibrary loan
Many books may be available at only one or two libraries. In most cases these can be obtained through inter-library loan. This service is available at most library systems, including public libraries. Privileges and services vary considerably. The National Agricultural Library and the State Library in Sacramento may also be useful.

2.2 Data bases
Electronic data bases enable searches to be done in minutes that would take days by hand. They are most useful for recent journal articles.

The University of California, C.S.U., most public libraries, and many other libraries subscribe to services that provide on-line access to these data bases. They can usually provide search assistance by appointment for a modest fee.

If you can't afford a search, the data bases are usually available in printed form which you can search manually. Most of these are at the U.C. Davis, Riverside, and Berkeley libraries. Many of these can be used at the other U.C., public, and college libraries as well.

These data bases can also be accessed and used by most home computers with a telephone modem through vendors, 2.23. Off-peak rates are often much cheaper than daytime charges. For details refer to the vendors below. The vendors also provide training materials and special services.

2.21 Recent sources covering ag data bases
Directory of online data bases. Cuadra Associates, Santa Monica, CA. A journal providing description and access contacts for existing and new data bases. [Z699.22 B/D/I/LA/ SB/SD]
2.22 The data bases

Agricola--the National Agricultural Library data base, Beltsville, MD. From 1970 to present. Covers all agricultural subjects. Emphasis on federal and state material as well as journal articles. Free searches on computer (CD-ROM) at U.C. Davis and U.C. Riverside libraries, among others. Oriented toward research and practice with emphasis on the U.S.
Print form = National Bibliography of Agriculture.

CAB Abstracts--the Commonwealth Agricultural Bureau data base, Farnham Royal, England, coverage 1973 to present. Excellent article summaries (abstracts) often make this data base more useful than Agricola but it is also more expensive. Coverage is best on Commonwealth countries but the abstract journals that form the basis of this data base include U.S. and European sources as well. Includes both research and practice, with much low-input Third World coverage.
Print form = almost 30 separate abstracting journals, e.g., Horticultural Abstracts, Field Crops Abstracts, etc.

Agris--the United Nations agricultural data base, maintained by the Food and Agriculture Organization, Rome, Italy. Coverage from 1975 to present. Very good abstracts. Oriented toward research and practice, with much low-input Third World coverage.
Print form = Agrindex.

Print form = none.

BIOSIS--worldwide coverage of biological research, 1969 to present. Searchable abstracts from 1976 provide added value. Research oriented.
Print form = Biological Abstracts.

CRIS--profiles current research by U.S.D.A., state agricultural experiment stations and cooperating researchers. CRIS can provide access to information before it is published and help identify researchers working on specific problems of interest. Available on computer disc (CD-ROM via OCLC). Research only.
Print form = none.

IMPACT--Univ. of California Integrated Pest Management Implementation Group at U.C. Davis operates this data base. Pest management guidelines for agricultural crops, weather database, degree day programs, pest and plant development models. Accessible by home computers. For information call (916) 752-8350. Emphasis on applied integrated pest management. See also IPM project manuals, see 9.30.
MELVYL--The University of California libraries data base of books and periodicals can be very helpful. Primarily research material, but some practical manuals and material as well. Print form = none.

2.23 Data base vendors

BRS—BRS Information Technologies, 1200 Route 7, Latham, NY 12110
(518) 783-1161 or (800) 345-4BRS.
BRS included over 130 electronic data bases in 1987. Among these are CAIN = (Agricola), BIOL = (Biosis), CABA =(CAB Abstracts). Inexpensive user service called BRS After Dark.

DIALOG —Information Retrieval Service, 3460 Hillview Avenue, Palo Alto, CA 94304 (800) 3-DIALOG.
Dialog offered 240 data bases in 1986 including Agricola, CAB Abstracts, Agribusiness U.S.A., Biosis, CRIS, and Agris. Inexpensive user service called Knowledge Index.

3.0 Sustainable agriculture organizations

In many cases these groups have limited staff and resources. Be patient and persistent. The most appropriate group to contact will depend on your climate and crop. We have included a wide range of organizations to provide growers with the best chance of finding someone with experience with their crop or product--whether it is crayfish or cold climate grain production. (for more complete listings see the books in the directory section 7.0)

3.1 California

Univ. of California Sustainable Agriculture Research and Education Program
U.C. Davis, Davis, CA 95616 Through your local farm advisor.
Univ. of California Statewide IPM Project-IPM Manual Group
U.C. Davis, Davis, CA 95616 Through your local farm advisor--computer hookups are available, see IMPACT under data bases.
Committee for Sustainable Agriculture (was Steering Comm. for Sust. Agric.) PO Box 1300 Colfax, CA 95713 (916) 346-2777
California Action Network, PO Box 464, Davis, CA 95617
The Small Farm Center, Coop. Extension, U.C. Davis, Davis, CA 95616, (916) 752-6690.
California Institute for Rural Studies, PO Box 530, Davis, CA 95617 (916) 756-6555
Calif. Certified Organic Farmers, PO Box 8136, Santa Cruz, CA 95061 (408) 423-2263
CCOF does organic certification of farms.
Ecology Action, 5798 Ridewood Rd, Willits, CA 95490
The following sources may also be of value for questions concerning sustainable agriculture:
The Water Resources Center, U.C. Riverside, CA 92521
Calif. Agricultural Technology Institute, Cal State Univ. Fresno Fresno, CA 93740 (209) 294-2361
Operate the CATI NET computer network.
Pesticide monitoring in food for chemical-free marketing programs.

3.2 National

Alternative Farming Systems
Information Center
National Agricultural Library
Room 111, Beltsville, MD 20701
(301) 344-3704
Bibliographic information, copies of rare material, etc.

Appropriate Technology Transfer for Rural Areas (ATTRA)
Box 17
7777 Walnut Grove Road
Memphis, TN 39119
(800) 346-9140
Free information service for sustainable agriculture. Staffed with a mix of specialists who answer questions on sustainable agriculture.

U.S.D.A. Office for Small Scale Agriculture
RM 635 Hamilton Building
U.S. Dept. of Agric.
Washington, DC 20250
Ask for their list of publications.

Organic Food Producers Assoc. of North America (OFPANA)
PO Box 6414
Lehigh Valley, PA 18001

Bio Integral Resource Center
Box 7414
Berkeley, CA 94707
Biological pest management information.

Institute for Alternative Agriculture
9200 Edmonston Road, Suite 117
Greenbelt, MD 20770

Biodydynamic Extension Service
20 Old Farms Road
Hatfield, MA 01038

Demeter Association
4214 National Avenue
Burbank, CA 91505

Soil Conservation Society of America
7515 N.E. Ankeny
Ankeny, IA 50021

American Farmland Trust
1920 N Street, NW Suite 400
Washington, DC 20036

National Coalition Against the Misuse of Pesticides
530 7th Street SE
Washington, DC 20003

3.3 Western U.S.

AERO
44 N Last Chance Gulch
Helena, MT 59601
Oregon Tilth Producers Coop  
34168 Scott Lane  
Cottage Grove, OR 97424

Washington Tilth Producers Coop  
1219 Sauk Rd.  
Concrete, WA 98234

Permaculture Institute of North America  
4649 Sunnyside Avenue North  
Seattle, WA 98103

Northern Plains Sustainable Agriculture Society  
Rt 1 Box 73  
Windsor, ND 58493

3.4 Midwestern U.S.

The Land Institute  
2440 E. Water Well Rd.  
Salina, KS 67401

Land Stewardship Project  
512 West Elm Street  
Stillwater, MN 55082

Ozark Organic Growers Association  
1434 Lunsford  
Fayetteville, AR 72701

Organic Growers and Buyers Association  
PO Box 9747  
Minneapolis, MN 55440

Center for Rural Affairs  
PO Box 405  
Walthill, NE 68067

Leopold Center for Sustainable Agriculture  
104 Curtis  
ISU  
Ames, IA 50010

Micheal Fields Agric. Res. Institute  
East Troy, WI 53120

Practical Farmers of Iowa  
Rt 2 Box 132  
Boone, IA 50036

Wisconsin Rural Development Center  
PO Box 504  
Black Earth, WI 53515

Organic Growers of Michigan  
3031 White Creek Road  
Kingston, MI 48741

Kerr Center for Sustainable Agric.  
Box 588  
Poteau, OK 74953

3.5 Eastern U.S.

Regenerative Agriculture Association  
222 Main Street  
Emmaus, PA 18098

Farming Alternatives Project  
443 Warren Hall  
Cornell Univ.  
Ithaca, NY 14853

Maine Organic Farmers and Gardeners Association (MOFGA)  
PO Box 2176  
Augusta, ME 04330
Natural Organic Farmers Association
PO Box 335
Antrim, NH 03440

Virginia Association of Biological Farmers
PO Box 252
Flinthill, VA 22627

Rodale Research Center
RD 1
Kutztown, PA 19530

Rodale Institute
33 East Minor
Emmaus, PA 18098

Sunny Valley Foundation
4 Sunny Valley Lane
New Milford, CT 06776

New Alchemy Institute
237 Hatchville Rd.
East Falmouth, MA 02536

3.4 Southern U.S.

Ozark Organic Growers Association
1434 Lunsford
Fayetteville, AR 72701

Carolina Farm Stewardship Association
PO Box 205
Bynum, NC 27228

Rural Advancement Fund
2124 Commonwealth Avenue
Charlotte, NC 28205

3.7 International

Agroecology Program
U.C. Santa Cruz
Santa Cruz, CA 95064

Rodale International
222 Main Street
Emmaus, PA 18098
(215) 967-8405

International Alliance for Sustainable Agriculture,
Rm 202 1701 University Avenue SE
Minneapolis, MN 55414

Organic Crop Improvement Association
PO Box 819
Kearney, NE 68848
(308) 234-2645

Center for Indigenous Knowledge for Agriculture
and Rural Development, Dr. D. M. Warren, TCS
Program, 318 Curtiss Hall, Iowa State University,
Ames, IA 50011.

GTZ-Forschungsstelle fur Internationale
Agrarentwicklung
Ringstr. 19
6900 Heidelberg, Germany

Ecological Agriculture Project
PO Box 191
MacDonald College of McGill Univ.
21,111 Ste. Anne de Bellevue
Quebec, Canada H9X 1CO
Information Centre for Low External Input Agriculture [ILEIA]
PO Box 64
3830 AB Leusden, The Netherlands

Agreco
Oekozentrum Langenbruck
CH-4438, Langenbruck, Switzerland

Department of Ecological AgriCulture
Haarweg 333, 6709 RZ
Wageningen, The Netherlands

Henry Doubleday Research Association
Ryton-on-Dunsmore
Coventry, UK CV8 3LG

Division of Alternative Agric. Methods
University of Kassel
D-3430
Witzenhausen, West Germany

International Federation of Organic Agriculture Movements (IFOAM)
c/o Bernward Geier
Norbahnhofstrasse 1 D-3430
Witzenhausen, FRG

Sustainable Agriculture Association
Box 1063
Nanton, Alberta TOI IRO Canada

4.0 Sources of books and written information

ANR Publications (U.C.)
6701 San Pablo Ave.
Oakland, CA 94608
(415) 642-2431
Free catalog.

AgAccess
PO Box 2008
Davis, CA 95617
Mail order agricultural book supplier, annotated catalog.

Agribookstore, Winrock International
1611 North Kent Street
Arlington, VA 22209
Good international coverage.

Capability Books
PO Box 114
Deer Park, WI 54007

ACRES USA
PO Box 9547
Kansas City, MO 64133

Biodynamic Literature
PO Box 253
Wyoming, RI 02898

Robert Gear
PO Box 1137
Greenfield, MA 01302
Used and out-of-print ag. books

5.0 Abstract/index journals and books

Abstract journals and books provide an intermediate level of access to material. Not as slow as journal searching--not as fast as electronic data bases. They provide citations to relevant journal articles or books which you can then use to find the actual item in your library. There are two sustainable agriculture abstract journals.
For full coverage of the literature it is necessary to consult specialized abstract/index journals. These cover much of the literature on sustainable agricultural but you will need to sift for it. Abstreco and Ag-Sieve should be used in addition to these sources, not in place of them.

The most important index source is the National Bibliography of Agriculture. The most important abstract sources are the Common-wealth Agricultural Bureau's set of several dozen abstracting journals (e.g., Horticultural, Weed, Field Crop, IRRICAB, and Irrigation and Drainage Abstracts, etc. (ask your librarian about which cover your topic); Agrindex; and Biological Abstracts. There can be considerable overlap among these but each contains much unique material. Most of these are at U.C.B., U.C.D., U.C.R., and many of the state colleges listed. Call your local college or U.C. library first.

6.0 Bibliographies


Coleman, E. nd. Annotated Bibliography of Biological Agriculture, Coolidge Center for the Advancement of Agriculture, Topsfield, MA 5p.


Hill, S.B. 1976. Reading References on Ecological Agriculture, Univ. of Regina, Department of Extension, Regina, Sask., Canada.

also see the National Agricultural Libraries series, Bibliographies of Agricultural Bibliographies, beginning with BLA-1 in 1978 and the Quick bibliography series.

There are also many extensive bibliographies on specific topics, such as: Satchell, J. and Martin, K. 1981. A Bibliography of Earthworm Research, Inst. of Terrestrial Ecology, Cumbria, UK 174p. [QL 391. 04 S38--D].

Written bibliographies are often the only way to search material that was published before electronic data bases began.
7.0 Directories

A directory can often provide more rapid access to people, materials, and products. There is not a comprehensive guide to sustainable agriculture products, markets, and services—yet. Some information is available in the two directories listed. See also the advertisements in periodicals in section 8.0. For farm equipment see Agricultural engineering and equipment, section 9.90.


Two of the larger suppliers of products and materials for sustainable agriculture in California are:

Peaceful Valley Farm Supply
11173 Peaceful Valley Rd.
Nevada City, CA 95959
(916) 265-FARM

Harmony Farm Supply
PO Box 451
Graton, CA 95444
(707) 823-9125.

8.0 Periodicals

Keeping abreast of current developments and reviewing recent research and demonstration projects is often easiest through the periodicals. The more useful journals and magazines include:

American Journal of Alternative Agriculture, Institute for Alternative Agriculture, 9200 Edmonston Road, Suite 117, Greenbelt, MD 20770 [S605.5 A437 R/SC, S605.5 A5--B/D/R]

The New Farm, 222 Main Street, Emmaus, PA 18098. [S560.N4--B/D, S1 .N49--SC]

Sustainable Agriculture News, UC Sustainable Agriculture Research and Education Program, Agronomy Extension, UC Davis, CA 95616.


Organic Market Report (OMNIS) PO Box 1300, Colfax, CA 95713 [S605.5 O78--D, HD9007.C2074--SC]

Marketing information and prices rather than production practices.
Sustainable farming practices are also appearing fairly regularly in conventional agriculture and science journals, including:

California Agriculture, Division of Agriculture and Natural Resources, Univ. of California, 2120 University Avenue, Berkeley, CA 94720 [S1.C18--B, S1.C15--I/RSC/SD, S39 C18--LA, S1.C3--SB]


California Farmer, 731 Market Street, San Francisco, CA, 94103 [F850.C117731--B, S1 C23--D, S1 C1351--LA, S1 C185--R/SB/SC]

Journal of Production Agriculture, 677 South Segoe Road, Madison, WI 53711

Intecol Bulletin, Inst. of Ecology, Univ. of Georgia, Athens, GA 30602 [QH540 I48--D/SB]

Agricultural Water Management, c/o Journal Information Center, Elsevier, 52 Vanderbilt Ave, NY, NY 10017 [S494.5.W3.A37--B/R/SB, TD388 A1 A34--D]

Agricultural Systems, c/o Journal Information Center, Elsevier, 52 Vanderbilt Ave, NY, NY 10017 A494.5 M3 A--D/SB, S3 .A43--R]

The Furrow, John Deere, 1400 Third Avenue, Moline, IL 61265

CATI Newsletter, Calif. Agric. Technology Institute, CSU Fresno, CA 93740

The Drylander, Dry Lands Research Institute, U.C. Riverside, Riverside, CA 92521.

Hort Ideas, Rt 1 Box 302, Gravel Switch, KY 40328

Depending on your topic, it may be helpful to examine the standard, specialist journals such as:

Hort Science, Journal of the Soil Science Society of America, Weed Science, etc.

and the alternative farming journals, such as:

MOFGA Newsletter, PO Box 2176, Augusta, ME 04330

Agrarian Advocate, Box 464, Davis, CA 95617

Harronsmith, The Creamery, Charlotte, VT 05445 [S522 02 H37--D]

Small Farmer's Journal, Box 2805, Eugene, OR 97402 [S1 S5--D]
Ask your librarian which journals are considered the major specialist journals on your topic. To most effectively use these and other journals consult abstract/index journals (section 5.0) and/or data bases (section 2.2).

9.0 Books

There are often many books that may be of value for a particular farm problem, but it is often difficult to find the right one. Much of the sustainable agriculture research has been in areas where climates, soils, and crops are different from most of California. The information they include may, or may not, be of much use here. This primer lists those books that we feel are most likely to be of value.

9.1 Overview

Sustainable agriculture requires skillful use of renewable, biological resources. The following manuals and books provide an introduction to using these practices profitably. They are uneven and less than ideal--but the best available. A wider selection of books on this general topic is included in section 9.99.


9.2 Marketing

There is little doubt that marketing is one of the essential skills for survival as a "sustainable" farmer. International marketing and direct sales are common practices among successful small and large farmers. Organic certification can increase market price and may be worth considering, contact CCOF--see section 3.1.

9.30 Pest Management

Univ. of California, Integrated Pest Management Series--excellent manuals. Available from ANR Publications (adress in section 4.0). Publication numbers are Tomatoes-3274, Cotton-3305, Citrus-3303, Almonds-3308, Walnuts-3270, Grapes-4105, Alfalfa Hay-3312, Pears-out of print, Potatoes-3316, Cole Crops and Lettuce-3307, and Rice-3280. This group has also prepared a number of other reports.

[SB931 .H595--R/SC]
9.30.1 Soil solarization

Soil solarization uses clear plastic sheeting to heat the soil and kill weeds and soil pathogens. It has proved to be very effective against many weeds and several soil pathogens in California.


9.32 Weed management


Principles of mechanical and cultural weed control and weed management are included but not emphasized.

9.32.1 Weeder Geese

Weeder geese have been used for many years to control unwanted vegetation in commercial crops, waterways, and lawns. At one time there were more than 200,000 weeder geese in the cotton fields of the San Joaquin Valley.

Weeder geese don't compact soil as heavy equipment and people will. They work seven days a week, rain or shine, and can be put into wet fields when machinery would bog down and cause severe damage to the soil structure. They can pull weeds close to and within the crop row where machines cannot reach.


9.32.2 Flame weeding

Flame weeding has been successful on a variety of crops, including carrots, that have been difficult to manage without chemical controls. Flame weeding is now used for many crops in Europe and is being used by several growers in California.

Hoffmann, M. 1986. Abflammtechnik (book) and equipment, KTBL, Bartninstr. 49, Postfach 12 01 42, 6100, Darmstadt 12, Germany 83p.

Red Devil, Flame Engineering Inc. PO Box 577, La Crosse, KS 67548 (800) 255-2469

9.40 Soil Management

Harris, F., ed. 1979. Fertile Soil Without Chemicals, Saskatchewan Dept. of Agriculture, Univ. of Regina Extension, Regina, Sask., Canada 131p. [S654 .F34--D, S605.5 F47--SB]


9.41 Biological Nitrogen Fixation

The 1973 oil embargo reminded California's farmers that fossil fuels are nonrenewable, limited resources. The farm sector was affected by shortages of fossil fuels and rapid price increases in nitrogen fertilizers made from fossil fuels. Natural biological
nitrogen fixation with the legume-Rhizobium symbiosis has been shown to be highly effective and offers considerable potential for energy conservation. Yet only a few legume species have been evaluated in California and legume based cropping systems have been little studied since the early part of this century.

The use of the Azolla-Anaebena symbioses has been explored for rice production in California. This is a common practice in many areas of the world. It proved to be effective in California but labor costs were considered to be too high for general use.


9.41.1 Ley Farming

The introduction of annual legumes and varietal improvements have helped double cereal and animal production in southern Australia since the 1930's. Several million acres of cereal production in comparable climates in California and Baja California would appear well suited for the adoption of ley farming.

The key features of this farming system are the use of self-regenerating annual legumes and integration of grazing animals in the rotation. The legume eliminates the need for nitrogen fertilizer by biologically fixing nitrogen from the atmosphere. The grazing animals recycle nitrogen, help manage the legume component, and suppress weeds.
9.42 Green Manure and Cover Crops

Green manure crops are grown and plowed under to improve the soil fertility and structure. They may also be used for grazing. Green manures can increase the general level of fertility by fixing nitrogen, mobilizing minerals, and by building up the soil organic matter.

However, there are also some potential disadvantages. Green manure crops may exhaust the supply of soil moisture for the following crop, adversely affect growth through allelopathy or, in some cases, lead to an increase of certain diseases, insects, and nematodes.


9.50 Water Management


9.50.1 Improving Irrigation

The efficiency of conventional irrigation systems can be improved with minor revisions and more careful management. Recent articles of interest include:


Some of the alternatives that may be worth a closer look include: closed conduit irrigation, porous capsules, pipe injection, and pitcher irrigation.


9.60 Farming Systems

Farming systems research includes the full environment of the farm including agronomic, economic, environmental, and social factors. It has proved to be very useful for developing better production systems.


9.61 Crop Rotations and Cropping Systems

Crop rotation is an integral part of integrated pest management. Crop rotations that include animals can be effective for the control of some of the persistent weeds, such as bindweed. Crop rotations and multiple cropping can also be used to favor beneficial insects that will help protect a subsequent crop.


Abstracts on Intercropping GTZ-Projekt Mischkulteren Forschungsstelle fur internationale Agrarentwicklung Ringstrabe 19 6900 Heidelberg, Germany (in English. 849 ref. ceased in 1986).
A cropping system is the kind and sequence of crops grown on a given area of soil over a period of time. It may be a regular rotation of different crops, in which the crops follow a definite order of appearance on the land, or it may consist of only one crop grown year after year on the same area. Other cropping systems may include different crops but lack a definite and planned order in which the crops follow one another.

A soil-management system includes the cropping system plus the other practices, such as the use of fertilizers, terracing, irrigation, and drainage, that accompany the cropping system.

9.62 Agroforestry

Many traditional farming systems integrate trees and crops. Many advantages can be realized from this combination. Some of the benefits include increasing the range of products and flexibility of marketing, nitrogen fixation, pest protection, groundwater management, and shelter for both crops and livestock.


(articles of value)


9.61.1 Cropping Systems and Soil

A cropping system is the kind and sequence of crops grown on a given area of soil over a period of time. It may be a regular rotation of different crops, in which the crops follow a definite order of appearance on the land, or it may consist of only one crop grown year after year on the same area. Other cropping systems may include different crops but lack a definite and planned order in which the crops follow one another.

A soil-management system includes the cropping system plus the other practices, such as the use of fertilizers, terracing, irrigation, and drainage, that accompany the cropping system.
9.63 Range Management


9.64 Gardening

Although the gardening books may be of most value for the gourmet and small grower, some include details and suggestions that could be of value for production farmers. Dick Raymond's book is a good example with a section on sustainable production.


9.65 Traditional Farming Systems

Recent studies of traditional farming systems have discovered that these "primitive" systems are ecologically sophisticated and can provide many lessons for improving the efficiency and productivity of modern farming.


9.65.1 Ridged Fields

Ridged or mounded fields are a common practice in many traditional agricultural systems. Recent research has shown they can be of great value in protecting avocado trees from root rot, Phytophthora cinnamomi.


9.66 New Crops

New crops can provide excellent profits to those who learn how to grow and market them first. They can also break the bank and the spirit of those who try them.


Some of the best new crops may be the flavorful old varieties. Information is available from.

Seed Saving Project
c/o Zea Sonnabend
Student Farm, Dept. of LAWR
139 Hoagland Hall
U.C. Davis, Davis, CA 95616

Seed Savers Exchange
PO Box 70
Decorah, IA 52101

There are also many crops which have been used extensively by native people and other cultures but which have not hit the commercial market here--yet.

Native Seeds/SEARCH
3950 West New York Drive
Tucson, AZ 85745

Natural Foods Institute
Box 185 WMB
Dudley, MA 011570

9.67 On-farm Research

Only on-farm research can determine the most workable system for a particular farm.


9.70 Soil Conservation


9.71 Conservation Tillage


9.78 Environmental Impact


9.79 Environmental Restoration


9.80 Microclimate

Microclimate is overlooked in farm operations. It can be especially important when establishing new crops, particularly long-lived tree and vine crops or grafting new varieties that are less cold-tolerant. Much of the area chosen for jojoba production, for example, proved to be climatically unsuitable. It has also been a problem for recent changes in avocado varieties.


9.81 Windbreaks and shelterbelts

Windbreaks and shelterbelts will often improve crop production sufficiently to justify the cost of establishment and maintenance. If a direct economic return can also be developed from a product such as firewood the benefits are even greater.


9.90 Ag Engineering and Equipment


Farm and Power Equipment Directory, Jan. issue of Farm and Power Equipment, St. Louis, MO.

Implement and Tractor, Jan. issue, Farm Press Publications, Clarksdale, MS.


Deere and Company, John Deere Rd, Moline, IL, 61625 produces an excellent series on the fundamentals of farm equipment operation. The European farm community has taken biological farming more seriously and more special equipment is available.

**9.99 General information on sustainable agriculture**


Walters, C. and Fenzau, C.J. 1979. An ACRES USA Primer, ACRES USA, Raytown, MO 464p. [S605.5 .W34--D]

Production cost

This report is one component of a larger project on information for sustainable agriculture. The allocation of costs within this project is not precise due to overlaps and related interactions. The estimated expenditure of funds from the U.C. Sustainable Agriculture Research and Education Program and the Librarians Association of the University of California for this guide is $3,500. The Dry Lands Research Institute contributed $1,000 and the UCR Foundation Dry Lands Research Institute Fund paid for the printing. In addition more than $3,000 dollars of uncompensated over-time was contributed by David Bainbridge and $1,000 by Steve Mitchell.

One key to sustainability - doing more with less - front and rear implements

A larger book on this topic will be released in 1990 or 1991.