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Essential Points 

Absorption is frequency-dependent 
 
 

Most HF absorption takes place within the D-region 
 
 

Within the D-region non-deviative absorption dominates 
(Assuming HF) 

 
Electron density is critical 
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Propagation via Sky Wave 

Ground Wave vs. Sky Wave 
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Ground Wave 

Typical HF ground-wave range 

Direct ray and ground-reflected ray  
combine to form space wave 

• Stays close to the earth 
• Doesn’t leave lower atmosphere 

• AM broadcast band has range  
of about 160 km (100 miles) 

Images courtesy of ARRL Antenna Book, p 23-4 

• Generally ineffective for  
long-range communications 
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Sky Wave 

Radio waves entering ionosphere at 
angles above critical angle  

go off into space 

• Leaves lower atmosphere 
• Passes through ionized region 
• Refracted according to geometric optics 

Distance vs. wave angle for one-
hop transmission 

• Range up to 4000 km (2500 miles) per hop 
• Efficient long-range communication 
• Subject to various atmospheric conditions 

Images courtesy of ARRL Antenna Book, pp 23-13, 23-16 
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Ground Wave vs. Sky Wave 

https://upload.wikimedia.org/wikipedia/commons/1/16/Skywave_Effect_of_AM.png 

By Own work (Own work) [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons 

Ground Wave 

Sky Wave 
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Definitions 
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Definitions 
Plasma: A macroscopically neutral assembly of charged and possibly also uncharged 
particles. 
 

IEEE Standard Definitions of Terms for Radio Wave Propagation," in IEEE Std 211-1997 , vol., no., pp.i-, 1998 doi: 10.1109/IEEESTD.1998.87897 
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particles. 
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Ionosphere: That part of a planetary atmosphere where ions and free electrons are 
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D region: The region of the terrestrial ionosphere between about 50 km and 90 km 
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E region: The region of the terrestrial ionosphere between about 90 km and 150 km 
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F region: The region of the terrestrial ionosphere from about 150–1000 km altitude.  

IEEE Standard Definitions of Terms for Radio Wave Propagation," in IEEE Std 211-1997 , vol., no., pp.i-, 1998 doi: 10.1109/IEEESTD.1998.87897 
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Definitions 
Plasma: A macroscopically neutral assembly of charged and possibly also uncharged 
particles. 
 
Dispersive medium: A medium in which one or more of the constitutive parameters 
vary with frequency. 
 
Ionosphere: That part of a planetary atmosphere where ions and free electrons are 
present in quantities sufficient to affect the propagation of radio waves. 
 
D region: The region of the terrestrial ionosphere between about 50 km and 90 km 
altitude. 
 
E region: The region of the terrestrial ionosphere between about 90 km and 150 km 
altitude. 
 
F region: The region of the terrestrial ionosphere from about 150–1000 km altitude. 
 
High-frequency Spectrum:   3.0 MHz-30 MHz 

IEEE Standard Definitions of Terms for Radio Wave Propagation," in IEEE Std 211-1997 , vol., no., pp.i-, 1998 doi: 10.1109/IEEESTD.1998.87897 
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Ionospheric Properties 
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Ionosphere 

The ionosphere is considered a weakly-ionized plasma 

For a fully-ionized plasma the ratio of charged particles to neutral particles is about 1 

Within the ionized region of the atmosphere this ratio is always much less than 1.   
 

Hence the ionosphere is a weakly-ionized plasma 
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D-region 

Height: About 90 km 
 

Thickness: About 40 km 
 

Significant diurnal variations  
 

Typical daytime electron density   
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E-region 

Height: About 150 km 
 

Thickness: About 60 km 
 

Diurnal variations though not as pronounced as D-region 
 

Typical daytime electron density:  
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F1-region 

Height: About 350 km 
 

Thickness: About 200 km 
 

Diurnal variations 
 

Typical daytime electron density:  
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F2-region 

Height:  About 1000 km 
 

Thickness:  About 750 km 
 

Diurnal variations, though not as pronounced 
 

Electron Density:      

Unlike previous regions, F2 electron density decreases with height 

Important note: F2 becomes the F-region after sunset. 
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Ionospheric Properties 
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Electron Density: Function of Height 

Electron concentration per cubic centimeter (Daytime)  

Image from Kelley p 460 
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Electron Density: Function of Height 

Electron concentration per cubic centimeter (Daytime)  

Image from Kelley p 460 

Maybe doesn’t  
seem interesting 
but lots going on… 
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Geometric Approach 
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Geometric Approach 

“Bends away from the normal” 

Ray path in a continuously varying medium (Ionosphere) 
(Lied p 4) 
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Geometric Approach 
Snell’s Law: 
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Geometric Approach 
Snell’s Law: 

Index of Refraction: 

Dielectric Constant of Weakly-Ionized Gas 

Note dependence on electron density 
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Geometric Approach 

Within a dispersive media such as the ionosphere: 
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Geometric Approach 

For a given frequency, as electron density increases index of refraction decreases 

Within a dispersive media such as the ionosphere: 
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Geometric Approach 

For a given frequency, as electron density increases index of refraction decreases 

Within a dispersive media such as the ionosphere: 

For a given electron density as frequency increases index of refraction approaches unity 
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Geometric Approach 

Three Cases: 
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Three Cases: 
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The Basic Absorption Equation 
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Basic Absorption Equation 

Equation for total system loss 

Note: Each term is a base-10 log.  Hence, we add them 
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Basic Absorption Equation 

Equation for total system loss 

Critical term is path loss 

Note: Each term is a base-10 log.  Hence, we add them 

Transmitting Receiving 

What goes on in between 
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Basic Absorption Equation 

Equation for path loss 
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Basic Absorption Equation 

Equation for path loss 

Critical term is absorption.   
Hence, we focus on the absorption term 
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Basic Absorption Equation 

Equation for absorption 
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Basic Absorption Equation 
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Basic Absorption Equation 

Kappa has units of nepers per unit length.  Hence, the above equation has units of nepers 

From the rules of logarithms, 

Since there are roughly 8.69 dB per neper the  
absorption equation has units of dB per unit length 
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radio wave frequency and plasma frequency 
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Types of Absorption 

Type of absorption depends on relationship between 
radio wave frequency and plasma frequency 

Type one: Radio wave frequency about the same as plasma frequency 

Hence, the wave propagates slowly at the group velocity through ionosphere 

This type of absorption is called Deviative Absorption 

Deviative absorption uncommon in D-region 66 



Types of Absorption 

Type of absorption depends on relationship between 
radio wave frequency and plasma frequency 

Type two: Radio wave frequency greater than plasma frequency 
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Types of Absorption 

Type of absorption depends on relationship between 
radio wave frequency and plasma frequency 

Type two: Radio wave frequency greater than plasma frequency 
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Types of Absorption 

Type of absorption depends on relationship between 
radio wave frequency and plasma frequency 

Type two: Radio wave frequency greater than plasma frequency 

Hence, wave propagates at about speed of light 

This is called non-deviative absorption 
Very common in D-region 

Note: Appendix 1 of my report presents a discussion/derivation of group and phase velocities. 
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Types of Absorption 
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Profile of plasma frequency from 50-400 km.  But we’re really interested in D-region 
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Types of Absorption 
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Note plasma frequency nearly always less than 3.0 MHz 
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Types of Absorption 
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Thus we see that non-deviative absorption dominates in the D-region 
(Assuming 3.0 < f < 30.0 MHz) 
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Absorption Coefficient 
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Absorption Coefficient 
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Absorption Coefficient 

Units of kappa are nepers per unit length 

Defining Terms: 
 

New important term! 
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Absorption Coefficient 

Units of kappa are nepers per unit length 

Plugging in constant values we find that, 
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Absorption Equation Revisited 

82 



Absorption Equation 

83 



Absorption Equation 

84 



Absorption Equation 

85 



Absorption Equation 

In this form integral is over path length 
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Absorption Equation 

In this form integral is over path length 

Electron density and collision frequency can be functions of height 
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Absorption Equation 

In this form integral is over path length 

Electron density and collision frequency can be functions of height 
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Absorption Equation 
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Absorption Equation 
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Absorption Equation 

Now integrated over height 
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Absorption Equation 

For special case of vertical transmission: 
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Absorption Equation 

For special case of vertical transmission: 
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Special Cases 
Case 1: Radio wave frequency greater than collision frequency. 

Case 2: Radio wave frequency less than collision frequency. 

Case 3: Radio wave frequency about equal to collision frequency. 

According to Davies and Lied Case 1 applies  
generally for HF radio waves at mid-latitudes 

The absorption equation in terms of radio wave frequency in cycles per second. 
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Absorption Equation 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

To
ta

l A
b

so
rp

ti
o

n
 (

d
B

) 

Frequency (MHz) 

Total Absorption by Frequency 

Thus we see the frequency-dependence of absorption 

Based on data from Bain and Harrison as well as Kelley and also a HW assignment from L. Scherliess 
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Thus we see that most absorption takes place within the D-region 

Based on data from Bain and Harrison as well as Kelley and also a HW assignment from L. Scherliess 
102 



0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

D E F Total 

A
b

so
rp

ti
o

n
 (

d
B

) 

Region 

Absorption at 3.0 MHz 

0 

5 

10 

15 

20 

25 

D E F Total 

A
b

so
rp

ti
o

n
 (

d
B

) 

Region 

Absorption at 6.0 MHz 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

D E F Total 

A
b

so
rp

ti
o

n
 (

d
B

0
 

Region 

Absorption at 15.0 MHz 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

D E F Total 

A
b

so
rp

ti
o

n
 (

d
B

) 

Region 

Absorption at 30.0 MHz 

Thus we see that most absorption takes place within the D-region 

Based on data from Bain and Harrison as well as Kelley and also a HW assignment from L. Scherliess 
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Electron Density 
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Electron Density 

Typical electron concentration per cubic centimeter (Daytime)  

Image from Kelley p 460 
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Electron Density 

Typical electron concentration per cubic centimeter (Daytime)  

Image from Kelley p 460 

Again, not too 
interesting 
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Electron Density 
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Electron density profile below 100 km 
Based on Bain and Harrison [1972] 
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Everything depends on electron density 
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Thus we see that electron density is the most critical component 
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Conclusions/Discussion 

We showed the following to be true: 

Non-deviative absorption within the D-region can be described  
mathematically in terms of neutral density or collision frequency, 

132 



Conclusions/Discussion 

We showed the following to be true: 

Non-deviative absorption within the D-region can be described  
mathematically in terms of neutral density or collision frequency, 

133 



Acknowledgments 

Special thanks to the following who assisted in the preparation of the presentation 

Dr. Jan J. Sojka 
 
Dr. Vince Eccles 

And thank you to my supervisory committee: 
 

Doctors J. Sojka, D. Peak, B. Fejer, M. Taylor, R. Fullmer 

134 



References Key Sources 

135 



fin 

136 



Questions? 

137 



138 



139 



140 



Frequency (MHz) 

3 56.6 

5 20.4 

7 10.4 

9 6.29 

11 4.21 
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31 0.530 

D-region absorption values using data from Bain and Harrison 
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