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Essential Points

Absorption is frequency-dependent
Most HF absorption takes place within the D-region
Within the D-region non-deviative absorption dominates

(Assuming HF)

Electron density is critical



Propagation via Sky Wave

Ground Wave vs. Sky Wave



Ground Wave
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Sky Wave

* Leaves lower atmosphere
* Passes through ionized region
* Refracted according to geometric optics

Radio waves entering ionosphere at
angles above critical angle
go off into space

* Range up to 4000 km (2500 miles) per hop
* Efficient long-range communication
* Subject to various atmospheric conditions

Images courtesy of ARRL Antenna Book, pp 23-13, 23-16
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Ground Wave vs. Sky Wave
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Definitions

Plasma: A macroscopically neutral assembly of charged and possibly also uncharged
particles.

Dispersive medium: A medium in which one or more of the constitutive parameters
vary with frequency.

lonosphere: That part of a planetary atmosphere where ions and free electrons are
present in quantities sufficient to affect the propagation of radio waves.

D region: The region of the terrestrial ionosphere between about 50 km and 90 km
altitude.

E region: The region of the terrestrial ionosphere between about 90 km and 150 km
altitude.

F region: The region of the terrestrial ionosphere from about 150-1000 km altitude.

High-frequency Spectrum: 3.0 MHz-30 MHz

IEEE Standard Definitions of Terms for Radio Wave Propagation," in IEEE Std 211-1997 , vol., no., pp.i-, 1998 doi: 10.1109/IEEESTD.1998.87897



lonospheric Properties



lonosphere

The ionosphere is considered a weakly-ionized plasma
For a fully-ionized plasma the ratio of charged particles to neutral particles is about 1

Within the ionized region of the atmosphere this ratio is always much less than 1.

Hence the ionosphere is a weakly-ionized plasma



D-region

Height: About 90 km
Thickness: About 40 km
Significant diurnal variations

Typical daytime electron density

~10° — 108 5m=°



E-region

Height: About 150 km
Thickness: About 60 km
Diurnal variations though not as pronounced as D-region

Typical daytime electron density:

A 101 — 4 3%71et m 2



F1-region

Height: About 350 km
Thickness: About 200 km
Diurnal variations

Typical daytime electron density:

el 1011 — 2 26901 3



F2-region

Height: About 1000 km
Thickness: About 750 km
Diurnal variations, though not as pronounced

Electron Density:

32 1010 — 2 269 Q1% 3

Unlike previous regions, F2 electron density decreases with height

Important note: F2 becomes the F-region after sunset.
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Electron Density: Function of Height
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Electron Density: Function of Height
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| REFRACTIVE MEDIUM

0, VACUUM
- Hq

Ray path in a continuously varying medium (lonosphere)
(Lied p 4)

When pu, < u; = 6; < 0, > “Bends away from the normal”



Geometric Approach

Snell’s Law:

pq sin(6,) = py sin(6,)
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uy sin(6y) = p, sin(8,) > Index of Refraction: [ = -
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Geometric Approach

Snell’s Law: 2
sin(@+) = - sin(@ > Index of Refraction: [ = -
py sin(@,) = py sin(6;) Vs
Dielectric Constant of Weakly-lonized Gas l
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Geometric Approach

Snell’s Law:

N

Index of Refraction: U =

pq sin(6,) = py sin(6,) -

Dielectric Constant of Weakly-lonized Gas
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Geometric Approach

Snell’s Law:

Index of Refraction: U =

py sin(6y) = u, sin(6;)

Dielectric Constant of Weakly-lonized Gas
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Geometric Approach

Snell’s Law: 2
[y sin(8;) = p, sin(6,) > Index of Refraction: 1t = —
L'phase
Dielectric Constant of Weakly-lonized Gas
Wy
i =, n=
2
, _ Nee ¥ n,e?
EDmE EgMM, W
7 ; n,é¢
f & Am2eymf?

Note dependence on electron density



Geometric Approach

b 1 Mg 4
ar Amleymf?

Within a dispersive media such as the ionosphere:
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Geometric Approach

1 Mg 4

Amleymf?

et

Within a dispersive media such as the ionosphere:

For a given frequency, as electron density increases index of refraction decreases

For a given electron density as frequency increases index of refraction approaches unity



Index of Refraction

Index of Refraction as Function of Frequency
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Three Cases:
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Geometric Approach

Three Cases:

w > w, = | < 1 = Refraction
w =< w, = |1 —» 0 = Reflection point

W > w, = [i~1 = Continues through ionosphere



The Basic Absorption Equation



Basic Absorption Equation

Equation for total system loss

Le=1Ly+Ly—G +L,+Ly—G + L,

Note: Each term is a base-10 log. Hence, we add them



Basic Absorption Equation

Equation for total system loss

Transmitting

t~
I

s Lm + Ltn F Gt

Receiving

La'— G5k

What goes on in between

Critical term is path loss

Note: Each term is a base-10 log. Hence, we add them



Basic Absorption Equation

Equation for path loss

Lszd +Lﬂ+Lf



Basic Absorption Equation

Equation for path loss

=Y A A

Critical term is absorption.
Hence, we focus on the absorption term



Basic Absorption Equation

Equation for absorption

P.
L, = 10log (P—)

u

P. = Actual power received

P, = Power received without absorption
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I = Received amplitude after one reflection
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K = Measure of amplitude decay per unit distance



Basic Absorption Equation

Equation for absorption

L, = 201log(p)

p = Apparent Reflection Coefficient

g W

I = Received amplitude after one reflection

I, = Received amplitude without absorption

K = Measure of amplitude decay per unit distance

|
Letpzrszzexp[—jfcds
0



Basic Absorption Equation

=>1n(p)=—J.H:ds
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=>1n(p)=—J.H:ds

Kappa has units of nepers per unit length. Hence, the above equation has units of nepers

In(x) _ In(p)
nc10) ~ %8 =0y
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Basic Absorption Equation
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Basic Absorption Equation

=>1n(p)=—J.H:ds

Kappa has units of nepers per unit length. Hence, the above equation has units of nepers

In(x) _ In(p)
nc10) ~ %8 =0y

From the rules of logarithms, log(x) =

In(p)
In(10)

Since L, = 20log(p) = L, = 20

= I — —8.69[1{(15



Basic Absorption Equation

=>1n(p)=—J.H:ds

Kappa has units of nepers per unit length. Hence, the above equation has units of nepers

In(x In
From the rules of logarithms, lﬂg(#“f) =3 ln((lg) = lt}g(p) 3 1n((f()))
In(p)

Since L, = 20log(p) = L, = 20

In(10)

= I — —8.69[1{(15

Since there are roughly 8.69 dB per neper the
absorption equation has units of dB per unit length
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Type of absorption depends on relationship between
radio wave frequency and plasma frequency

Type one: Radio wave frequency about the same as plasma frequency
fpmf

> uKL1
c

phase — E and Vgroup = CH

Hence, the wave propagates slowly at the group velocity through ionosphere

v

This type of absorption is called Deviative Absorption



Types of Absorption

Type of absorption depends on relationship between
radio wave frequency and plasma frequency

Type one: Radio wave frequency about the same as plasma frequency
fpmf

> uKL1
c

phase — E and Vgroup = CH

Hence, the wave propagates slowly at the group velocity through ionosphere

v

This type of absorption is called Deviative Absorption

Deviative absorption uncommon in D-region



Types of Absorption

Type of absorption depends on relationship between
radio wave frequency and plasma frequency

Type two: Radio wave frequency greater than plasma frequency

f>1,



Types of Absorption

Type of absorption depends on relationship between
radio wave frequency and plasma frequency

Type two: Radio wave frequency greater than plasma frequency
o

=>u=x1

Cc

~ cand v = CH#%

v — y ==
phase group
H



Types of Absorption

Type of absorption depends on relationship between
radio wave frequency and plasma frequency

Type two: Radio wave frequency greater than plasma frequency

f >
=>u=1
c
Vphase = E ~ ¢ and Vgroup = ¢~ €

Hence, wave propagates at about speed of light

This is called non-deviative absorption
Very common in D-region

Note: Appendix 1 of my report presents a discussion/derivation of group and phase velocities.



Types of Absorption

Plasma Frequency Profile
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Height (km)
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Typical Plasma Frequency Profile within D-region
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Height (km)

Types of Absorption

Typical Plasma Frequency Profile within D-region
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Thus we see that non-deviative absorption dominates in the D-region
(Assuming 3.0 < f < 30.0 MHz)
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= —8.69[}{(15

In the absorption equation kappa is defined as the absorption coefficient

Recall that kappa is also defined as the measure of the decay of amplitude per unit distance

I show in appendix 2 of my report that kappa is derived from Maxwell’s equations
Hence, the absorption equation is based on first principles

In chapter 2 of lonospheric Radio Propagation Davies spends many pages discussing
the theory of wave propagation. Starting with Maxwell’s equations it can be
shown that the absorption coefficient can be described by,



Absorption Coefficient

= —8.69[}{(15

In the absorption equation kappa is defined as the absorption coefficient

Recall that kappa is also defined as the measure of the decay of amplitude per unit distance

I show in appendix 2 of my report that kappa is derived from Maxwell’s equations
Hence, the absorption equation is based on first principles

In chapter 2 of lonospheric Radio Propagation Davies spends many pages discussing
the theory of wave propagation. Starting with Maxwell’s equations it can be
shown that the absorption coefficient can be described by,

o -7 (1)( n,v )
K_Zeﬂmc 1 \w? + v




Absorption Coefficient

ey (1)( n,v )
K_Zeﬂmc W \w? + v?




Absorption Coefficient

ey (1)( n,v )
K_Zeﬂmc W \w? + v?

Units of kappa are nepers per unit length

Defining Terms:

e = elementary charge = 1.6 X 1071° C

€, = permittivity of free space = 8.85x 10~ 1* F - m™1

m, = electron mass = 9.11 x 107! kg

¢ = speed of light in vacuum = 3.0 X 105 m - s 1

i = real part of refractive index = 1.0

n, = electron density

v = collision frequency< New important term!
w = angular frequency of wave




Absorption Coefficient

ey (1)( n,v )
K_Zeﬂmc W \w? + v?

Units of kappa are nepers per unit length

Plugging in constant values we find that,

Y

w? + 2

k=529 x 1075 ( ) Np -m™*



Absorption Equation Revisited



Absorption Equation

= —8.69[}{(15




Absorption Equation

= —8.69[}{(15

e (1)( n,v )
K_Zeﬂmc ) N2 fv®



Absorption Equation

= —8.69[}{(15

e (1)( n,v )
K_Zeﬂmc ) N2 fv®

n,v

w2 + v

S L, =—4.60 %105 f( ) ds dB-m™



Absorption Equation

n,v
L, =—4.60 x 107 f (=7 s

In this form integral is over path length



Absorption Equation

n,v
La:—4.60x10_5f( 2 S
w V

In this form integral is over path length

Electron density and collision frequency can be functions of height



Absorption Equation

n,v
La:—4.6l}><10_5f( 2 S
w V

In this form integral is over path length

Electron density and collision frequency can be functions of height
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Absorption Equation

L, =460 x 107 f(

ng,V

w? + v?

) ds




Absorption Equation

L, =460 x 107 f(

ng,V

w? + v?

) ds

\ 4

ds

sina



Absorption Equation

n,v
La:—4.6l}><10_5f( 2 S
w V

\ 4

= L, =

4.60 X 10-5f ( n,v

w? + vz) o

sina

Now integrated over height

ds

sina



Absorption Equation

n,v
La:—4.60x10_5f( 2 S
w V

For special case of vertical transmission:

a = 90°



Absorption Equation

n,v
La:—4.60x10_5f( 2 S
w V

For special case of vertical transmission:

a = 90°

n,v

w2 + v

I = — 4060561055 f ( ) dh
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Special Cases

Case 1: Radio wave frequency greater than collision frequency.

Case 2: Radio wave frequency less than collision frequency.

Case 3: Radio wave freqguency about equal to collision frequency.

According to Davies and Lied Case 1 applies
generally for HF radio waves at mid-latitudes

460 x 107> [ /n,v
L scae f(

sin « w* ) %



Special Cases

Case 1: Radio wave frequency greater than collision frequency.

Case 2: Radio wave frequency less than collision frequency.

Case 3: Radio wave freqguency about equal to collision frequency.

According to Davies and Lied Case 1 applies
generally for HF radio waves at mid-latitudes

460 x 107> [ /n,v
L, == dh
g sin « f ( )

The absorption equation in terms of radio wave frequency in cycles per second.



Absorption Equation
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Thus we see the frequency-dependence of absorption

Based on data from Bain and Harrison as well as Kelley and also a HW assignment from L. Scherliess
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Thus we see that most absorption takes place within the D-region

Based on data from Bain and Harrison as well as Kelley and also a HW assignment from L. Scherliess



Absorption at 3.0 MHz

D E F

Region

Absorption at 15.0 MHz

Region
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Absorption at 6.0 MHz
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Absorption at 30.0 MHz

D E F Total
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Thus we see that most absorption takes place within the D-region

Based on data from Bain and Harrison as well as Kelley and also a HW assignment from L. Scherliess
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Electron Density
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Again, not too

interesting \

Electron Density
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Everything depends on electron density

* Plasma Frequency
* Index of Refraction

» Absorption Coefficient

Thus we see that electron density is the most critical component
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Collision Frequency

We are concerned with two collision types:
* Electron-ion

* Electron-neutral

We find the following equations for collision frequencies:

Total Electron Collision Frequency: v, =v,; +v,,
Electron-lon: v,; = [34 + 4.181n(T2/n)]n T, /% s

Electron-Neutral: v,, = (5.4 X 10‘1”)11“\/?85—1

In the above T, is the electron temperature
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We are able to make the following simplifying assumptions:

* Within the D-region, the neutral atmosphere density is fairly consistent
 Within the D-region, N,; >> N.. Hence we need only consider electron-neutral collisions

e Within the D-region 1, ~T, . Hence it is sufficient to us the neutral temperature

=>v=(54x10"1n VT s1

—6.3x 107 [hr
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Non-deviative absorption within the D-region can be described
mathematically in terms of neutral density or collision frequency,
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Frequency (MHz) L_(dB)
3 56.6
5 20.4
i/ 10.4
2] 6.29
11 4.21
13 3.02
15 2.27
T/ 1.76
19 141
21 1.16
23 0.964
5 0.816
27 0.699
29 0.606
31 0.530

D-region absorption values using data from Bain and Harrison



	Utah State University
	From the SelectedWorks of David Smith
	Spring 2017

	High-frequency radio wave absorption in the D-region
	High-frequency  Radio Wave Absorption

