

Utah State University

From the SelectedWorks of David Smith

Spring 2017

High-frequency radio wave absorption in the D-region

David Alan Smith, Utah State University

This work is licensed under a Creative Commons CC_BY International License.

Available at: https://works.bepress.com/david-smith/7/

High-frequency Radio Wave Absorption

A research report presented by David Alan Smith

> Utah State University Department of Physics March 30, 2017

Game Plan

Radio Wave Propagation

- Sky Waves
- Properties of lonosphere
- Geometric Optics

High-frequency Radio Wave Absorption

- Basic Absorption Equation
- Types of Absorption
- Absorption Coefficient
- Absorption Equation
- Special Cases

Electron Density

Collision Frequency

Conclusions/Discussion

Questions

Absorption is **frequency-dependent**

Absorption is frequency-dependent

Most HF absorption takes place within the D-region

Absorption is frequency-dependent

Most HF absorption takes place within the D-region

Within the D-region **non-deviative** absorption dominates (Assuming HF)

Absorption is frequency-dependent

Most HF absorption takes place within the D-region

Within the D-region non-deviative absorption dominates (Assuming HF)

Electron density is critical

Propagation via Sky Wave

Ground Wave vs. Sky Wave

Ground Wave

Direct ray and ground-reflected ray combine to form space wave

• AM broadcast band has range of about 160 km (100 miles)

• Generally ineffective for long-range communications

- Stays close to the earth
- Doesn't leave lower atmosphere

Sky Wave

Radio waves entering ionosphere at angles above critical angle go off into space

Range up to 4000 km (2500 miles) per hop
Efficient long-range communication
Subject to various atmospheric conditions

- Leaves lower atmosphere
- Passes through ionized region
- Refracted according to geometric optics

Ground Wave vs. Sky Wave

https://upload.wikimedia.org/wikipedia/commons/1/16/Skywave_Effect_of_AM.png By Own work (Own work) [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons

Plasma: A macroscopically neutral assembly of charged and possibly also uncharged particles.

Plasma: A macroscopically neutral assembly of charged and possibly also uncharged particles.

Dispersive medium: A medium in which one or more of the constitutive parameters vary with frequency.

Plasma: A macroscopically neutral assembly of charged and possibly also uncharged particles.

Dispersive medium: A medium in which one or more of the constitutive parameters vary with frequency.

Ionosphere: That part of a planetary atmosphere where ions and free electrons are present in quantities sufficient to affect the propagation of radio waves.

Plasma: A macroscopically neutral assembly of charged and possibly also uncharged particles.

Dispersive medium: A medium in which one or more of the constitutive parameters vary with frequency.

Ionosphere: That part of a planetary atmosphere where ions and free electrons are present in quantities sufficient to affect the propagation of radio waves.

D region: The region of the terrestrial ionosphere between about 50 km and 90 km altitude.

Plasma: A macroscopically neutral assembly of charged and possibly also uncharged particles.

Dispersive medium: A medium in which one or more of the constitutive parameters vary with frequency.

Ionosphere: That part of a planetary atmosphere where ions and free electrons are present in quantities sufficient to affect the propagation of radio waves.

D region: The region of the terrestrial ionosphere between about 50 km and 90 km altitude.

E region: The region of the terrestrial ionosphere between about 90 km and 150 km altitude.

Plasma: A macroscopically neutral assembly of charged and possibly also uncharged particles.

Dispersive medium: A medium in which one or more of the constitutive parameters vary with frequency.

Ionosphere: That part of a planetary atmosphere where ions and free electrons are present in quantities sufficient to affect the propagation of radio waves.

D region: The region of the terrestrial ionosphere between about 50 km and 90 km altitude.

E region: The region of the terrestrial ionosphere between about 90 km and 150 km altitude.

F region: The region of the terrestrial ionosphere from about 150–1000 km altitude.

Plasma: A macroscopically neutral assembly of charged and possibly also uncharged particles.

Dispersive medium: A medium in which one or more of the constitutive parameters vary with frequency.

Ionosphere: That part of a planetary atmosphere where ions and free electrons are present in quantities sufficient to affect the propagation of radio waves.

D region: The region of the terrestrial ionosphere between about 50 km and 90 km altitude.

E region: The region of the terrestrial ionosphere between about 90 km and 150 km altitude.

F region: The region of the terrestrial ionosphere from about 150–1000 km altitude.

High-frequency Spectrum: 3.0 MHz-30 MHz

IEEE Standard Definitions of Terms for Radio Wave Propagation," in IEEE Std 211-1997, vol., no., pp.i-, 1998 doi: 10.1109/IEEESTD.1998.87897

Ionospheric Properties

Ionosphere

The ionosphere is considered a weakly-ionized plasma

For a fully-ionized plasma the ratio of charged particles to neutral particles is about 1

Within the ionized region of the atmosphere this ratio is always much less than 1.

Hence the ionosphere is a weakly-ionized plasma

D-region

Height: About 90 km

Thickness: About 40 km

Significant diurnal variations

Typical daytime electron density $\sim 10^9 - 10^{11} \ m^{-3}$

E-region

Height: About 150 km

Thickness: About 60 km

Diurnal variations though not as pronounced as D-region

Typical daytime electron density:

 $\sim 1 \times 10^{11} - 4 \times 10^{11} \ m^{-3}$

F1-region

Height: About 350 km

Thickness: About 200 km

Diurnal variations

Typical daytime electron density: $\sim 4 \times 10^{11} - 2 \times 10^{12} m^{-3}$

F2-region

Height: About 1000 km

Thickness: About 750 km

Diurnal variations, though not as pronounced

Electron Density: $\sim 8 \times 10^{10} - 2 \times 10^{12} m^{-3}$

Unlike previous regions, F2 electron density decreases with height

Important note: F2 becomes the F-region after sunset.

Ionospheric Properties

Electron Density: Function of Height

Electron concentration per cubic centimeter (Daytime)

Image from Kelley p 460

Electron Density: Function of Height

Image from Kelley p 460

Ray path in a continuously varying medium (lonosphere) (Lied p 4)

When $\mu_2 < \mu_1 \Rightarrow \theta_1 < \theta_2$

"Bends away from the normal"

Snell's Law: $\mu_1 \sin(\theta_1) = \mu_2 \sin(\theta_2)$

Snell's Law:

 $\mu_1 \sin(\theta_1) = \mu_2 \sin(\theta_2) - ---$

Index of Refraction: $\mu =$

 v_{phase}

С

Snell's Law: $\mu_1 \sin(\theta_1) = \mu_2 \sin(\theta_2) \longrightarrow$ Index of Refraction: $\mu = \frac{c}{v_{phase}}$

 $\mu = \sqrt{\epsilon_r}$

Note dependence on electron density

$$\mu = \sqrt{1 - \frac{n_e e^2}{4\pi^2 \epsilon_0 m f^2}}$$

Within a dispersive media such as the ionosphere:

$$\mu = \sqrt{1 - \frac{n_e e^2}{4\pi^2 \epsilon_0 m f^2}}$$

Within a dispersive media such as the ionosphere:

For a given frequency, as electron density increases index of refraction decreases

$$\mu = \sqrt{1 - \frac{n_e e^2}{4\pi^2 \epsilon_0 m f^2}}$$

Within a dispersive media such as the ionosphere:

For a given frequency, as electron density increases index of refraction decreases

For a given electron density as frequency increases index of refraction approaches unity

Index of Refraction as Function of Frequency

Number of electrons per cubic meter

$$\mu = \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

Three Cases:

$$\mu = \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

Three Cases:

 $\omega > \omega_p \Rightarrow \mu < 1 \Rightarrow \text{Refraction}$

$$\mu = \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

Three Cases:

 $\omega > \omega_p \Rightarrow \mu < 1 \Rightarrow \text{Refraction}$

 $\omega \leq \omega_p \Rightarrow \mu \rightarrow 0 \Rightarrow \text{Reflection point}$

$$\mu = \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

Three Cases:

 $\omega > \omega_p \Rightarrow \mu < 1 \Rightarrow \text{Refraction}$

 $\omega \leq \omega_p \Rightarrow \mu \rightarrow 0 \Rightarrow \text{Reflection point}$

 $\omega \gg \omega_p \Rightarrow \mu \sim 1 \Rightarrow$ Continues through ionosphere

Equation for total system loss

$$L_{s} = L_{ta} + L_{tp} - G_{t} + L_{p} + L_{rp} - G_{r} + L_{ra}$$

Note: Each term is a base-10 log. Hence, we add them

Equation for total system loss

Transmitting Receiving

$$L_s = \boxed{L_{ta} + L_{tp} - G_t} + \boxed{L_p} + \boxed{L_{rp} - G_r + L_{ra}}$$

What goes on in between

Critical term is path loss

Note: Each term is a base-10 log. Hence, we add them

Equation for path loss

 $L_p = L_d + L_a + L_f$

Equation for path loss

$$L_p = V_d + L_a + V_f$$

Critical term is absorption. Hence, we focus on the absorption term

Equation for absorption

$$L_a = 10 \log \left(\frac{P_r}{P_u}\right)$$

 $P_r \equiv$ Actual power received

 $P_u \equiv$ Power received without absorption

Equation for absorption

 $L_a = 20 \log(\rho)$

 $\rho \equiv \text{Apparent Reflection Coefficient}$

Equation for absorption

 $L_a = 20 \log(\rho)$

 $\rho \equiv \text{Apparent Reflection Coefficient}$

 $I = I_0' e^{-\int \kappa \, ds}$

Equation for absorption

 $L_a = 20 \log(\rho)$

 $\rho \equiv$ Apparent Reflection Coefficient $I = I'_0 e^{-\int \kappa \, ds}$

 $I \equiv \text{Received amplitude after one reflection}$ $I'_0 \equiv \text{Received amplitude without absorption}$ $\kappa \equiv \text{Measure of amplitude decay per unit distance}$

Equation for absorption

 $L_a = 20 \log(\rho)$

 $ho \equiv$ Apparent Reflection Coefficient $I = I_0' e^{-\int \kappa \, ds}$

 $I \equiv \text{Received amplitude after one reflection}$ $I'_0 \equiv \text{Received amplitude without absorption}$ $\kappa \equiv \text{Measure of amplitude decay per unit distance}$ $\text{Let } \rho \equiv \frac{I}{I'_0} \Rightarrow \rho = \exp\left[-\int \kappa \, ds\right]$

 $\Rightarrow \ln(\rho) = -\int \kappa \, ds$

 $\Rightarrow \ln(\rho) = -\int \kappa \, ds$

Kappa has units of nepers per unit length. Hence, the above equation has units of nepers

 $\Rightarrow \ln(\rho) = -\int \kappa \, ds$

Kappa has units of nepers per unit length. Hence, the above equation has units of nepers

From the rules of logarithms, $\log(x) = \frac{\ln(x)}{\ln(10)} \Rightarrow \log(\rho) = \frac{\ln(\rho)}{\ln(10)}$

 $\Rightarrow \ln(\rho) = -\int \kappa \, ds$

Kappa has units of nepers per unit length. Hence, the above equation has units of nepers

From the rules of logarithms,
$$\log(x) = \frac{\ln(x)}{\ln(10)} \Rightarrow \log(\rho) = \frac{\ln(\rho)}{\ln(10)}$$

Since $L_a = 20 \log(\rho) \Rightarrow L_a = 20 \frac{\ln(\rho)}{\ln(10)}$

 $\Rightarrow \ln(\rho) = -\int \kappa \, ds$

Kappa has units of nepers per unit length. Hence, the above equation has units of nepers

From the rules of logarithms,
$$\log(x) = \frac{\ln(x)}{\ln(10)} \Rightarrow \log(\rho) = \frac{\ln(\rho)}{\ln(10)}$$

Since $L_a = 20 \log(\rho) \Rightarrow L_a = 20 \frac{\ln(\rho)}{\ln(10)}$

 $\Rightarrow L_a = -8.69 \int \kappa \, ds$

 $\Rightarrow \ln(\rho) = -\int \kappa \, ds$

Kappa has units of nepers per unit length. Hence, the above equation has units of nepers

From the rules of logarithms,
$$\log(x) = \frac{\ln(x)}{\ln(10)} \Rightarrow \log(\rho) = \frac{\ln(\rho)}{\ln(10)}$$

Since
$$L_a = 20 \log(\rho) \Rightarrow L_a = 20 \frac{\ln(\rho)}{\ln(10)}$$

$$\Rightarrow L_a = -8.69 \int \kappa \, ds$$

Since there are roughly 8.69 dB per neper the *absorption equation* has units of *dB per unit length*

Type of absorption depends on relationship between radio wave frequency and plasma frequency

Type of absorption depends on relationship between radio wave frequency and plasma frequency

Type one: Radio wave frequency about the same as plasma frequency

 $f_p \sim f$

Type of absorption depends on relationship between radio wave frequency and plasma frequency

Type one: Radio wave frequency about the same as plasma frequency

 $f_p \sim f$ $\Rightarrow \mu \ll 1$ $v_{phase} = \frac{c}{\mu} \text{ and } v_{group} = c\mu$

Type of absorption depends on relationship between radio wave frequency and plasma frequency

Type one: Radio wave frequency about the same as plasma frequency

 $f_p \sim f$ $\Rightarrow \mu \ll 1$ $v_{phase} = \frac{c}{\mu} \text{ and } v_{group} = c\mu$

Hence, the wave propagates slowly at the group velocity through ionosphere

This type of absorption is called **Deviative Absorption**

Type of absorption depends on relationship between radio wave frequency and plasma frequency

Type one: Radio wave frequency about the same as plasma frequency

 $f_p \sim f$ $\Rightarrow \mu \ll 1$ $v_{phase} = \frac{c}{\mu} \text{ and } v_{group} = c\mu$

Hence, the wave propagates slowly at the group velocity through ionosphere

This type of absorption is called **Deviative Absorption**

Deviative absorption uncommon in D-region

Type of absorption depends on relationship between radio wave frequency and plasma frequency

Type two: Radio wave frequency greater than plasma frequency

 $f > f_p$

Type of absorption depends on relationship between radio wave frequency and plasma frequency

Type two: Radio wave frequency greater than plasma frequency

 $f > f_p$ $\Rightarrow \mu \approx 1$

 $v_{phase} = \frac{c}{\mu} \approx c \text{ and } v_{group} = c\mu \approx c$

Type of absorption depends on relationship between radio wave frequency and plasma frequency

Type two: Radio wave frequency greater than plasma frequency

 $f > f_p$

 $\Rightarrow \mu \approx 1$

 $v_{phase} = \frac{c}{\mu} \approx c \text{ and } v_{group} = c\mu \approx c$

Hence, wave propagates at about speed of light

This is called **non-deviative absorption** Very common in D-region

Note: Appendix 1 of my report presents a discussion/derivation of group and phase velocities.

Plasma Frequency Profile

Profile of plasma frequency from 50-400 km. But we're really interested in D-region

Profile of plasma frequency from 50-100 km. Note plasma frequency nearly always *less than 3.0 MHz*
Types of Absorption

Thus we see that non-deviative absorption dominates in the D-region (Assuming 3.0 < f < 30.0 *MHz*)

$$L_a = -8.69 \int \kappa \, ds$$

In the absorption equation kappa is defined as the absorption coefficient

$$L_a = -8.69 \int \kappa \, ds$$

In the absorption equation kappa is defined as the absorption coefficient

Recall that kappa is also defined as the measure of the decay of amplitude per unit distance

$$L_a = -8.69 \int \kappa \, ds$$

In the absorption equation kappa is defined as the absorption coefficient

Recall that kappa is also defined as the measure of the decay of amplitude per unit distance

I show in appendix 2 of my report that kappa is derived from Maxwell's equations Hence, the absorption equation is based on first principles

$$L_a = -8.69 \int \kappa \, ds$$

In the absorption equation kappa is defined as the absorption coefficient

Recall that kappa is also defined as the measure of the decay of amplitude per unit distance

I show in appendix 2 of my report that kappa is derived from Maxwell's equations Hence, the absorption equation is based on first principles

In chapter 2 of *Ionospheric Radio Propagation* Davies spends many pages discussing the theory of wave propagation. Starting with Maxwell's equations it can be shown that the absorption coefficient can be described by,

$$L_a = -8.69 \int \kappa \, ds$$

In the absorption equation kappa is defined as the absorption coefficient

Recall that kappa is also defined as the measure of the decay of amplitude per unit distance

I show in appendix 2 of my report that kappa is derived from Maxwell's equations Hence, the absorption equation is based on first principles

In chapter 2 of *Ionospheric Radio Propagation* Davies spends many pages discussing the theory of wave propagation. Starting with Maxwell's equations it can be shown that the absorption coefficient can be described by,

$$\kappa = \frac{e^2}{2\epsilon_0 mc} \left(\frac{1}{\mu}\right) \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right)$$

$$\kappa = \frac{e^2}{2\epsilon_0 mc} \left(\frac{1}{\mu}\right) \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right)$$

$$\kappa = \frac{e^2}{2\epsilon_0 mc} \left(\frac{1}{\mu}\right) \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right)$$

Units of kappa are nepers per unit length

Defining Terms:

 $e \equiv \text{elementary charge} = 1.6 \times 10^{-19} C$ $\epsilon_0 \equiv \text{permittivity of free space} = 8.85 \times 10^{-12} F \cdot m^{-1}$ $m_e \equiv \text{electron mass} = 9.11 \times 10^{-31} kg$ $c \equiv \text{speed of light in vacuum} = 3.0 \times 10^8 m \cdot s^{-1}$ $\mu \equiv \text{real part of refractive index} \cong 1.0$ $n_e \equiv \text{electron density}$ $\nu \equiv \text{collision frequency} \qquad \text{New important term!}$ $\omega \equiv \text{angular frequency of wave}$

$$\kappa = \frac{e^2}{2\epsilon_0 mc} \left(\frac{1}{\mu}\right) \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right)$$

Units of kappa are nepers per unit length

Plugging in constant values we find that,

$$\kappa \cong 5.29 \times 10^{-6} \left(\frac{n_e \nu}{\omega^2 + \nu^2} \right) Np \cdot m^{-1}$$

Absorption Equation Revisited

$$L_a = -8.69 \int \kappa \, ds$$

$$L_a = -8.69 \int \kappa \, ds$$

$$\kappa = \frac{e^2}{2\epsilon_0 mc} \left(\frac{1}{\mu}\right) \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right)$$

$$L_a = -8.69 \int \kappa \, ds$$

$$c = \frac{e^2}{2\epsilon_0 mc} \left(\frac{1}{\mu}\right) \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right)$$

$$\Rightarrow L_a = -4.60 \times 10^{-5} \int \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right) ds \ dB \cdot m^{-1}$$

$$L_a = -4.60 \times 10^{-5} \int \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right) \, ds$$

In this form integral is over *path length*

$$L_a = -4.60 \times 10^{-5} \int \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right) \, ds$$

In this form integral is over *path length*

Electron density and collision frequency can be functions of height

$$L_a = -4.60 \times 10^{-5} \int \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right) \, ds$$

In this form integral is over *path length*

Electron density and collision frequency can be functions of height

$$L_a = -4.60 \times 10^{-5} \int \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right) \, ds$$

 $\Rightarrow s = \frac{h}{\sin \alpha}$

$$L_a = -4.60 \times 10^{-5} \int \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right) \, ds$$

 $\Rightarrow s = \frac{h}{\sin \alpha}$

dh ds =sinα

$$L_a = -4.60 \times 10^{-5} \int \left(\frac{n_e v}{\omega^2 + v^2}\right) ds$$

$$\Rightarrow s = \frac{h}{\sin \alpha} \qquad \longrightarrow \qquad ds = \frac{dh}{\sin \alpha}$$

$$\Rightarrow L_a = -\frac{4.60 \times 10^{-5}}{\sin \alpha} \int \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right) dh$$

Now integrated over height

$$L_a = -4.60 \times 10^{-5} \int \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right) \, ds$$

For special case of vertical transmission:

 $\alpha = 90^{\circ}$

$$L_a = -4.60 \times 10^{-5} \int \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right) \, ds$$

For special case of vertical transmission:

 $\alpha = 90^{\circ}$

$$\Rightarrow L_a = -4.60 \times 10^{-5} \int \left(\frac{n_e \nu}{\omega^2 + \nu^2}\right) dh$$

Case 1: Radio wave frequency greater than collision frequency.

Case 1: Radio wave frequency greater than collision frequency.

Case 2: Radio wave frequency less than collision frequency.

Case 1: Radio wave frequency greater than collision frequency.

Case 2: Radio wave frequency less than collision frequency. Case 3: Radio wave frequency **about equal** to collision frequency.

Case 1: Radio wave frequency greater than collision frequency. Case 2: Radio wave frequency less than collision frequency. Case 3: Radio wave frequency about equal to collision frequency. According to Davies and Lied Case 1 applies generally for HF radio waves at mid-latitudes

Case 1: Radio wave frequency greater than collision frequency.

Case 2: Radio wave frequency less than collision frequency. Case 3: Radio wave frequency about equal to collision frequency. According to Davies and Lied Case 1 applies generally for HF radio waves at mid-latitudes

$$L_a = -\frac{4.60 \times 10^{-5}}{\sin \alpha} \int \left(\frac{n_e \nu}{\omega^2}\right) dh$$

Case 1: Radio wave frequency greater than collision frequency.

Case 2: Radio wave frequency less than collision frequency. Case 3: Radio wave frequency about equal to collision frequency. According to Davies and Lied Case 1 applies generally for HF radio waves at mid-latitudes

$$L_a = -\frac{4.60 \times 10^{-5}}{\sin \alpha} \int \left(\frac{n_e \nu}{\omega^2}\right) dh$$
$$\Rightarrow L_a = -\frac{1.17 \times 10^{-6}}{\sin(\alpha) f^2} \int n_e \nu \, dh$$

The absorption equation in terms of radio wave frequency in cycles per second. 10

Total Absorption by Frequency

Thus we see the **frequency-dependence** of absorption

Thus we see that most absorption takes place within the D-region

Based on data from Bain and Harrison as well as Kelley and also a HW assignment from L. Scherliess

Thus we see that most absorption takes place within the D-region

Based on data from Bain and Harrison as well as Kelley and also a HW assignment from L. Scherliess

Typical electron concentration per cubic centimeter (Daytime)

Typical electron concentration per cubic centimeter (Daytime)

Electron Density Profile

Electron density profile below 100 km

Based on Bain and Harrison [1972]
Everything depends on electron density

Everything depends on electron density

Plasma Frequency

Everything depends on electron density

- Plasma Frequency
- Index of Refraction

Everything depends on electron density

- Plasma Frequency
- Index of Refraction
- Absorption Coefficient

Everything depends on electron density

- Plasma Frequency
- Index of Refraction
- Absorption Coefficient

Thus we see that electron density is the most critical component

We are concerned with two collision types:

- Electron- ion
- Electron-neutral

We are concerned with two collision types:

- Electron- ion
- Electron-neutral

We find the following equations for collision frequencies:

We are concerned with two collision types:

- Electron- ion
- Electron-neutral

We find the following equations for collision frequencies:

Total Electron Collision Frequency: $v_e = v_{ei} + v_{en}$

We are concerned with two collision types:

- Electron- ion
- Electron-neutral

We find the following equations for collision frequencies:

Total Electron Collision Frequency: $v_e = v_{ei} + v_{en}$

Electron-lon: $v_{ei} = [34 + 4.18 \ln(T_e^3/n_e)]n_e T_e^{-3/2} s^{-1}$

We are concerned with two collision types:

- Electron- ion
- Electron-neutral

We find the following equations for collision frequencies:

Total Electron Collision Frequency: $v_e = v_{ei} + v_{en}$

Electron-lon: $v_{ei} = [34 + 4.18 \ln(T_e^3/n_e)]n_e T_e^{-3/2} s^{-1}$

Electron-Neutral: $v_{en} = (5.4 \times 10^{-10}) n_n \sqrt{T_e} s^{-1}$

We are concerned with two collision types:

- Electron- ion
- Electron-neutral

We find the following equations for collision frequencies:

Total Electron Collision Frequency: $v_e = v_{ei} + v_{en}$

Electron-lon: $v_{ei} = [34 + 4.18 \ln(T_e^3/n_e)]n_e T_e^{-3/2} s^{-1}$

Electron-Neutral: $v_{en} = (5.4 \times 10^{-10}) n_n \sqrt{T_e} s^{-1}$

In the above T_e is the electron temperature

We are able to make the following simplifying assumptions:

We are able to make the following simplifying assumptions:

• Within the D-region, the neutral atmosphere density is fairly consistent

We are able to make the following simplifying assumptions:

• Within the D-region, the neutral atmosphere density is fairly consistent

• Within the D-region, $n_n \gg n_e$. Hence we need only consider electron-neutral collisions

We are able to make the following simplifying assumptions:

- Within the D-region, the neutral atmosphere density is fairly consistent
- Within the D-region, $n_n \gg n_e$. Hence we need only consider electron-neutral collisions
- Within the D-region $T_n \sim T_e$. Hence it is sufficient to us the neutral temperature

We are able to make the following simplifying assumptions:

• Within the D-region, the neutral atmosphere density is fairly consistent

- Within the D-region, $n_n \gg n_e$. Hence we need only consider electron-neutral collisions
- Within the D-region $T_n \sim T_e$. Hence it is sufficient to us the neutral temperature

 $\Rightarrow \nu = (5.4 \times 10^{-10}) n_n \sqrt{T} \ s^{-1}$

We are able to make the following simplifying assumptions:

- Within the D-region, the neutral atmosphere density is fairly consistent
- Within the D-region, $n_n \gg n_e$. Hence we need only consider electron-neutral collisions
- Within the D-region $T_n \sim T_e$. Hence it is sufficient to us the neutral temperature

$$\Rightarrow \nu = (5.4 \times 10^{-10}) n_n \sqrt{T} \ s^{-1}$$

$$\Rightarrow L_a = \frac{-6.3 \times 10^{-16}}{\sin(\alpha) f^2} \int_{h_0}^{h_f} n_e(h) n_n(h) \sqrt{T(h)} \, dh$$

We showed the following to be true:

Absorption is frequency-dependent

- Absorption is frequency-dependent
- Most HF absorption takes place within the D-region

- Absorption is frequency-dependent
- Most HF absorption takes place within the D-region
- Within the D-region non-deviative absorption dominates

- Absorption is frequency-dependent
- Most HF absorption takes place within the D-region
- Within the D-region non-deviative absorption dominates
- The electron density is the most critical component

We showed the following to be true:

Non-deviative absorption within the D-region can be described mathematically in terms of neutral density or collision frequency,

We showed the following to be true:

Non-deviative absorption within the D-region can be described mathematically in terms of neutral density or collision frequency,

$$\Rightarrow L_a = \frac{-6.3 \times 10^{-16}}{\sin(\alpha) f^2} \int_{h_0}^{h_f} n_e(h) n_n(h) \sqrt{T(h)} \, dh$$

$$\Rightarrow L_a = -\frac{1.17 \times 10^{-6}}{\sin(\alpha) f^2} \int n_e v \, dh$$

Acknowledgments

Special thanks to the following who assisted in the preparation of the presentation

Dr. Jan J. Sojka

Dr. Vince Eccles

And thank you to my supervisory committee:

Doctors J. Sojka, D. Peak, B. Fejer, M. Taylor, R. Fullmer

References

ARRL, 1991. Chapter 23, Radio Wave Propagation. In: *The ARRL Antenna Book*. 16 ed. Newington: The American Radio Relay League, pp. 23.1-23.27.

Bain, W. C. & Harrison, M. D., 1972. Model ionosphere for D region at Summer noon during sunspot maximum. *Proc. IEEE*, 119(7), pp. 790-796.

Davies, K., 1965. Chapter 2: Theory of Wave Propagation. In: *Ionospheric Radio Propagation*. s.l.:National Bureau of Standards, pp. 45-100.

Davies, K., 1965. Chapter 3, Synoptic Studies of the Ionosphere. In: *Ionospheric Radio Propagation*. s.l.:National Bureau of Standards, pp. 101-158.

Davies, K., 1965. Chapter 5, Signal Strength. In: Ionospheric Radio Propagation. s.l.: National Bureau of Standards, pp. 217-256.

Griffiths, D. J., 2013. Introduction to Electrodynamics. 4th ed. Boston: Pearson.

Key Sources

Hunsucker, R. & Hargreaves, J., 2003. The High-Latitude Ionosphere and its Effects on Radio Propagation. First ed. Cambridge: Cambridge University Press.

Jackson, J. D., 1999. Classical Electrodynamics. 3rd ed. Danvers: John Wiley & Sons, Inc.

Kelley, M. C. & Heelis, R. A., 1989. Appendix B; Reference Material and Equations. In: *The Earth's Ionosphere: Plasma Physics and Electrodynamics*. San Diego: Academic Press, Inc, pp. 459-471.

Lied, F. (., 1967. *High Frequency Radio Communications with Empahses on Polar Problems*. s.l.: The Advisory Group for Aerospace Research and Development.

Moen, J., 2004. Chapter 3: Structure and Composition of the Middle and Upper Atmosphere. In: FYS3610 Fall 2004 Space Physics Lecture Series. Oslo: s.n.

Moen, J., 2004. Chapter 4, The Ionosphere. In: FYS3620 Fall 2004 Space Physics Lecture Series. Oslo, Norway: s.n.

Odenwald, S., 2010. Introduction to Space Storms and Radiation. In: C. J. Schrijver & G. L. Siscoe, eds. *Heliophysics, Space Storms and Radiation: Causes and Effects*. New York: Cambridge University Press, pp. 15-41.

Rawer, K., 1952. Calculation of Sky-wave Field Strength. The Wireless Engineer, Volume 19, pp. 287-301.

Schunk, R. & Nagy, A., 2009. *Ionospheres: Physics, Plasma Physics, and Chemistry*. Second ed. Cambridge: Cambridge University Press.

Zolesi, B. & Cander, L., 2014. Chapter 2: The General Structure of the Ionosphere. In: *Ionospheric Prediction and Forecasting*. s.l.:Springer, pp. 11-47.

Questions?

$L_a(dB)$
56.6
20.4
10.4
6.29
4.21
3.02
2.27
1.76
1.41
1.16
0.964
0.816
0.699
0.606
0.530

D-region absorption values using data from Bain and Harrison