April 7, 2014

Sensitivity Considerations for a Short-range Test of the Gravitational Inverse-square Law

David Alan Smith, Humboldt State University
Crystal Cardenas, Humboldt State University
A. Conrad Harter, Humboldt State University
Dr. CD Hoyle, Humboldt State University
Holly Leopardi

This work is licensed under a Creative Commons CC_BY International License.

Available at: https://works.bepress.com/david-smith/5/
Sensitivity Considerations for a Short-range Test of the Gravitational Inverse-square Law

Dave Smith

American Physical Society
April Meeting 2014
Savannah, GA
April 5-8
Gravitational Physics Laboratory

PI: Dr. C.D. Hoyle

Undergraduate Researchers:

• H.F. Leopardi
• A.C. Harter
• K. Bell
• M.P. Ross
• D. Smith
• C. Cardenas
• E. Guerrero
• M. A. Leitner

Primary Research Areas

*WEP *ISL
At Short Range

Grant No. 1065697 and 1306783
Gravity is Well Tested

Newtonian Inverse-Square Law for Point Masses

\[F = -G \frac{m_1 m_2}{r^2} \]

The Weak Equivalence Principle

“The trajectory of a point mass in a gravitational field depends only on its initial position and velocity and is independent of its composition”
...But Lots to Learn

- GR Inconsistent with Standard Model
- String Theory – “Extra Dimensions”
- Dark Energy—Property of Gravity?
- Short-Range Forces—Exotic Particles
- WEP Violations Due to Composition
 - Baryon Number
 - Lepton Number
Newtonian Potential Energy with Yukawa Addition

\[V(r) = -\frac{Gm_1 m_2}{r} \left(1 + \alpha e^{-r/\lambda} \right) \]

\[\lambda = \text{Length Scale of Deviation} \]
\[\alpha = \text{Dimensionless Strength of Deviation} \]

As \(|\alpha| \to 0 \Rightarrow \text{GR Confirmed}\)
Current Precision/Expectations-ISL

ISL tested to about 55 microns

Grant No. 1065697 and 1306783
Vertical Plate Step Pendulum

Uniform Field—Any Torque May Indicate New Physics

Shaded area of pendulum represents area of different density

- Largely insensitive to Newtonian torque
- Highly sensitive to short-range effects
- Excellent Null Experiment
Gauss's Law for Gravity

\[\oint g \cdot \hat{n} \, dA = -4\pi GM_A \]

Spherical Symmetry:

\[g = \frac{-GM_A}{r^2} \]

Dependence on distance of separation

- Highly sensitive to Newtonian torque
- Difficult to separate short-range effects

Linear Symmetry:

\[g = \frac{-2GM_A}{Lr} \]

Infinite Slab/Plane:

\[g = \frac{-2GM_A}{A} \implies g \text{ is constant} \]

\[g = \text{constant} \implies F_g = \text{constant} \]

No dependence on distance of separation

- Attractor mass not infinite plane
- Some Newtonian torque present
- Very small

Where \(M_A \) is the Attractor Mass
Harmonic Torque Amplitudes [fNm]

<table>
<thead>
<tr>
<th></th>
<th>Newtonian</th>
<th>Yukawa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ω</td>
<td>0.0605</td>
<td>0.0816</td>
</tr>
<tr>
<td>2ω</td>
<td>0.0004</td>
<td>0.0415</td>
</tr>
<tr>
<td>3ω</td>
<td>0.0000</td>
<td>0.0154</td>
</tr>
<tr>
<td>4ω</td>
<td>0.0000</td>
<td>0.0005</td>
</tr>
<tr>
<td>5ω</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Note Harmonic Torque Amplitude of 1ω vs 2ω

Assumed Parameters:

\[
\lambda = 100\mu m \quad \alpha = 1
\]

• Blue Curve: Newtonian Torque Due to Finite Plate (Pure Sine Wave)
• Red Curve: Potential Yukawa Torque
Harmonic Torque Amplitudes [fNm]

<table>
<thead>
<tr>
<th></th>
<th>Newtonian</th>
<th>Yukawa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ω</td>
<td>0.0605</td>
<td>0.0816</td>
</tr>
<tr>
<td>2ω</td>
<td>0.0004</td>
<td>0.0415</td>
</tr>
<tr>
<td>3ω</td>
<td>0.0000</td>
<td>0.0154</td>
</tr>
<tr>
<td>4ω</td>
<td>0.0000</td>
<td>0.0005</td>
</tr>
<tr>
<td>5ω</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

1ω: Strong Newtonian and Yukawa Signals
2ω: Strong Yukawa Signal, Weak Newtonian
Current Precision/Expectations-ISL

ISL tested to about 55 microns
Prototypes of Attractor Mass and Step Pendulum
Electrostatic Membrane, AM, Pendulum

ESM Support Structure

Grant No. 1065697 and 1306783
Credits/Sources

Special Thanks to CD Hoyle

end
Torsion Pendulum

- Vary distance between M_1 and M_2
- Force on M_1 due to M_2 causes pendulum to twist
- Measure twist angle
- Compare with GR prediction
- Highly sensitive to Newtonian Torque

Grant No. 1065697 and 1306783
Yukawa Force on High-Density Step is Approximated by

\[F_Y = 2\pi\alpha G \rho_1 \rho_a A \lambda^2 \left[1 - e^{-t_1/\lambda} \right] \left[1 - e^{-t_a/\lambda} \right] e^{-s/\lambda} \]

\(\rho_1\) = Mass Density of Pendulum Step
\(\rho_a\) = Mass Density of Attractor Mass
\(t_1\) = Step Thickness
\(t_a\) = Attractor Mass Thickness
\(A\) = Area of Pendulum Step
\(s\) = Separation Distance, Pendulum Step and Attractor Mass
Short-Range Yukawa Torque on Entire Pendulum is Approximated by

\[N_Y \approx \pi \alpha G \rho_a R A (\rho_1 - \rho_2) \lambda^2 e^{-s/\lambda} \]

\(\rho_a = \) Mass Density of Attractor Mass
\(\rho_1 = \) Mass Density of Pendulum Step
\(\rho_2 = \) Mass Density of Lighter Step

\(R = \) Width of Step
\(A = \) Area of Pendulum Step
\(s = \) Separation Distance, Pendulum Step and Attractor Mass

Assumed Parameters:

\(\lambda \) very small