Skip to main content
Article
Distributed Crack Sensors Featuring Unique Memory Capability for Post-Earthquake Condition Assessment of RC Structures
Journal of Smart Structures and Systems
  • Genda Chen, Missouri University of Science and Technology
  • Ryan D. McDaniel
  • Shishuang Sun
  • David Pommerenke, Missouri University of Science and Technology
  • James L. Drewniak, Missouri University of Science and Technology
Abstract
A new design of distributed crack sensors based on the topological change of transmission line cables is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is primarily focused on the performance of cable sensors under dynamic loading, particularly a feature that allows for some ?emory?of the crack history of an RC member. This feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads, and are visually undetectable. Factors affecting the onset of the feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors are discussed. The sensors were proven to be fatigue resistant from shake table tests of RC columns. The sensors continued to show useful performance after the columns can no longer support additional loads.
Department(s)
Civil, Architectural and Environmental Engineering
Second Department
Electrical and Computer Engineering
Third Department
Materials Science and Engineering
Keywords and Phrases
  • Crack Detection and Localization,
  • Post-Disaster Condition Assessment,
  • Sensors,
  • Shake Table Tests
Library of Congress Subject Headings
Nondestructive testing
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2005 Techno Press, All rights reserved.
Publication Date
1-1-2005
Citation Information
Genda Chen, Ryan D. McDaniel, Shishuang Sun, David Pommerenke, et al.. "Distributed Crack Sensors Featuring Unique Memory Capability for Post-Earthquake Condition Assessment of RC Structures" Journal of Smart Structures and Systems (2005)
Available at: http://works.bepress.com/david-pommerenke/85/