Skip to main content
Article
Census of heat tolerance among Florida's threatened staghorn corals finds resilient individuals throughout existing nursery populations
Proceedings of the Royal Society B: Biological Sciences
  • Ross Cunning, John G. Shedd Aquarium
  • Katherine E Parker, John G. Shedd Aquarium
  • Kelsey Johnson-Sapp, University of Miami
  • Richard F Karp, University of Miami
  • Alexandra D Wen, University of Miami
  • Olivia M Williamson, University of Miami
  • Erich Bartels, Mote Marine Laboratory
  • Martine D'Alessandro, University of Miami
  • David S. Gilliam, Nova Southeastern University
  • Grace Hanson, Nova Southeastern University
  • Jessica Levy, Coral Restoration Foundation
  • Diego Lirman, University of Miami
  • Kerry Maxwell, Florida Fish and Wildlife Conservation
  • Wyatt C Million, University of Southern California
  • Alison L Moulding, NOAA Fisheries Southeast Regional Office
  • Amelia Moura, Coral Restoration Foundation
  • Erinn M Muller, Mote Marine Laboratory
  • Ken Nedimyer, Reef Renewal USA
  • Brian Reckenbeil, Florida Fish and Wildlife Conservation
  • Ruben van Hooidonk, University of Miami, NOAA Atlantic Oceanographic and Meteorological Laboratory
  • Craig Dahlgren, Perry Institute for Marine Science
  • Carly Kenkel, University of Southern California
  • John E Parkinson, University of South Florida
  • Andrew C Baker, University of Miami
ORCID
0000-0002-8730-2399
Document Type
Article
Publication Date
10-20-2021
Keywords
  • thermal stress assay,
  • Acropora cervicornis,
  • coral bleaching automated stress system,
  • coral restoration,
  • climate change,
  • coral reefs,
  • ecology,
  • evolution,
  • biological applications
Abstract

The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose–response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.

DOI
10.1098/rspb.2021.1613
Comments

This work was supported by NSF grant no. OCE-2023705 to R.C., C.K., J.E.P., C.D. and A.C.B. Additional support was generously provided by the Paul M. Angell Family Foundation, Dr Scholl Foundation and the Brunswick Public Foundation.

We thank J. Delaney and A. Bruckner of FKNMS for permit no. 2020-120. We thank D. Barshis, N. Evensen, and the Shedd Aquarium Fabrication Shop and Teen Learning Laboratory for assistance with CBASS construction, and the captain and crew of the R/V Coral Reef II, A. Kough, S. Kessel, G. Parsons, B. Crown, S. Sousley, B. Williams, A. Ayerza, P. McPherson and H. Wind for field support. We thank E. Kobetz (UM) for approving COVID fieldwork logistics.

Additional Comments
© 2021 The Author(s) Published by the Royal Society. All rights reserved.
Citation Information
Ross Cunning, Katherine E Parker, Kelsey Johnson-Sapp, Richard F Karp, et al.. "Census of heat tolerance among Florida's threatened staghorn corals finds resilient individuals throughout existing nursery populations" Proceedings of the Royal Society B: Biological Sciences Vol. 288 Iss. 1961 (2021) p. 20211613 ISSN: 0962-8452
Available at: http://works.bepress.com/david-gilliam/130/