St. Catherine University

From the SelectedWorks of Daron E Janzen

2015

Crystal Structures of Five 1-alkyl-4-aryl-1,2,4-triazol-1-ium Halide Salts

Marites A Guino-o, *University of St. Thomas, Minnesota* Meghan O Talbot Michael M Slitts Theresa N Pham Maya C Audi, et al.

Available at: https://works.bepress.com/daron-janzen/6/

Received 7 May 2015 Accepted 10 May 2015

Edited by M. Zeller, Youngstown State University, USA

Keywords: crystal structure; 1,2,4-triazolium salts; C-H···halide interactions

CCDC references: 1400159; 1400158; 1400157; 1400156; 1400155 Supporting information: this article has supporting information at journals.iucr.org/e

OPEN O ACCESS

Crystal structures of five 1-alkyl-4-aryl-1,2,4triazol-1-ium halide salts

Marites A. Guino-o,^a* Meghan O. Talbot,^a Michael M. Slitts,^a Theresa N. Pham,^a Maya C. Audi^a and Daron E. Janzen^b

^aChemistry Department, University of St Thomas, Mail OSS 402, Summit Avenue, St Paul, MN 55105-1079, USA, and ^bDept of Chemistry and Biochemistry, St. Catherine University, 2004 Randolph Avenue, St Paul, MN 55105, USA. *Correspondence e-mail: maguinoo@stthomas.edu

The asymmetric units for the salts 4-(4-fluorophenyl)-1-isopropyl-1,2,4-triazol-1ium iodide, $C_{11}H_{13}FN_3^+ \cdot I^-$, (1), 1-isopropyl-4-(4-methylphenyl)-1,2,4-triazol-1ium iodide, $C_{12}H_{16}N_3^+ \cdot I^-$, (2), 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, 1-methyl-4-phenyl-1,2,4-triazol-1-ium $C_{11}H_{14}N_3^+ \cdot I^-$, (3), and iodide. $C_9H_{10}N_3^+ \cdot I^-$, (4), contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, $C_{15}H_{14}N_3^+ \cdot Br^- \cdot H_2O$, (5), there is an additional single water molecule. There is a predominant C- $H \cdots X$ (halide) interaction for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with *para*-substitution on the arvl ring, there is an additional π -anion interaction between a triazolium carbon and iodide displayed by the layers. For salts without the *para*-substitution on the aryl ring, the π - π interactions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects.

1. Chemical context

Literature syntheses of asymmetric 1,2,4-triazolium cations have increased in recent years due to their utility as cations in ionic liquids (ILs) and as precursors to *N*-heterocyclic carbenes (NHCs) (Dwivedi *et al.*, 2014; Meyer & Strassner, 2011; Mochida *et al.*, 2011; Nelson, 2015; Porcar *et al.*, 2013; Strassner *et al.*, 2013). Most structural analyses of these cations have been performed to understand how the intermolecular features of ILs affect their physical properties. (Porcar *et al.*, 2013).

R = electron-donating or withdrawing substituents X = anions

Scheme 1. Strassner generalized structure of tunable alkyl-aryl ionic liquids (TAAILs)

Most recently, Strassner has introduced a new group of ionic liquids called 'TAAILs' (tunable aryl-alkyl ionic liquids) (Ahrens *et al.*, 2009). The idea is to tune the properties of the ionic liquids through modification of the aryl and alkyl substituents of an imidazole cation (Scheme 1). The new cations can still be combined with the previously used anions in ILs. These workers have demonstrated that electrondonating *para*-substituents on the aryl group lower the melting point, while electron-withdrawing *para*-substituents raise the melting point. Thus one can tune the IL properties through the introduction of an electronic variation through *para*substitution on the aryl rings. This group has also extended the concept to the 1,2,4-triazolium cation core (Meyer & Strassner, 2011).

Our group became interested in learning how the aryl/alkyl substituents on the triazole ring affect the solid-state structures of the salts because strategic choice of substituents should allow tailorable π - π interactions as predicted by Strassner's group (Meyer & Strassner, 2011). Herein, the preparation and crystal structure analyses of salts (1)–(5) are discussed (Scheme 2). Cations (1)–(3) compare the inductive effects of the electronic *para*-substituents in the aryl group, while cations (3)–(5) contrast the steric bulk of the alkyl substituents. None of the compounds presented here are ILs because we used iodide or bromide counter-anions to facilitate crystal formation. Understanding interactions in the solid state may help better design systems where the triazolium cations are needed.

Scheme 2. Triazolium salts (1)-(5)

2. Structural commentary

Salts (1) and (2) crystallized in the orthorhombic space group Pccn, salt (3) in the monoclinic space group $P2_1/n$, and salt (5) in the monoclinic space group C2/c. Salt (4) crystallized in the non-centrosymmetric space group Cc with a Flack parameter of -0.01 (2) indicating the absolute structure is well determined.

The asymmetric unit for all salts contains one cation and one iodide or bromide ion, except for salt (5), where there is an additional single water molecule. The bond lengths in the triazolium rings for all salts indicate aromaticity with C–N and N–N bond distances in the narrow range of 1.292 (6)– 1.365 (5) Å for (1), 1.304 (5)–1.365 (4) Å for (2), 1.301 (3)– 1.374 (3) Å for (3), 1.297 (6)–1.370 (5) Å for (4), and 1.299 (4)–1.375 (4) Å for (5); with N–C–N bond angles of 107.7 (4)° for (1), 107.5 (3)° for (2), 107.3 (2)° for (3), 107.5 (3)° for (4), and 107.2 (2)° for (5). These values are very similar to those reported for 4-phenyl-1-ethyl-4*H*-1,2,4-triazolium bromide, in which the C–N and N–N bond distances range is 1.301 (3)–1.469 (4) Å and the N–C–N bond angle is 107.8 (2)° (Meyer & Strassner, 2011). The phenyl ring for these salts lies in almost the same plane as the triazole ring

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for salt (1).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C1-H1\cdots I1^{i}$	0.95	2.97	3.912 (4)	170
$C2-H2\cdots I1^{ii}$	0.95	2.83	3.774 (5)	173
$C7-H7\cdots I1^{i}$	0.95	2.86	3.801 (4)	170
C8-H8···N3 ⁱⁱⁱ	0.95	2.60	3.548 (6)	174
$C11 - H11 \cdots I1^{ii}$	0.95	3.13	4.083 (5)	177

Symmetry codes: (i) $-x + \frac{1}{2}$, y, $z + \frac{1}{2}$; (ii) -x, -y, -z + 1; (iii) $x + \frac{1}{2}$, -y, $-z + \frac{3}{2}$.

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$) for salt (2).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1\cdots I1^{i}$	0.95	3.06	3.901 (3)	149
$C2-H2\cdots I1^{ii}$	0.95	2.84	3.771 (4)	168
C3−H3···I1 ⁱⁱⁱ	1.00	3.00	3.870 (4)	146
$C11 - H11 \cdots I1^{i}$	0.95	2.98	3.930 (3)	174

Symmetry codes: (i) $-x + \frac{1}{2}$, $y, z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 1; (iii) x, y, z + 1.

with torsion angles of $6.5 (7)^{\circ}$ for (1), $24.1 (5)^{\circ}$ for (2), $12.9 (4)^{\circ}$ for (4), and $3.1 (4)^{\circ}$ for (5); except for salt (3) where the phenyl ring is almost perpendicular to the triazole ring with a torsion angle of $65.1 (3)^{\circ}$. The torsion angle between the phenyl and triazole rings for the reported triazolium bromide is $5.8 (4)^{\circ}$ (Meyer & Strassner, 2011). There are no significant intramolecular interactions found in any of the salts.

3. Supramolecular features

For all five salts, there is a predominant $C-H\cdots$ halide intermolecular interaction between the hydrogen atoms in the triazolium ring and the counter ions, forming an extended network (Figs. 1–5 and Tables 1–5). For the asymmetric unit in salt (1), there are a total of four $C-H\cdots I^-$ intermolecular interactions with two neighboring molecules (Fig. 1, Table 1). Each iodide ion interacts with two C–H moieties from the triazolium ring and two from the *ortho* C–H moieties of the aryl group. There is an additional C–H···N interaction between the *meta* C–H of the aryl ring and the triazolium nitrogen atom. The fluorine substituent in the *para*- position of the aryl ring is not an acceptor in any of the C–H interactions in salt (1). The asymmetric unit of salt (2) shows a total of

Figure 1

Extended sheet network viewed along the c axis of salt (1). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 1.

Figure 2

Extended sheet network viewed along the c axis of salt (2). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 2.

Figure 3

Extended sheet network viewed along the c axis of salt (3). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 3.

Figure 4

Extended sheet network viewed along the a axis of salt (4). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 4.

Figure 5

Extended sheet network of salt (5). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 5.

three $C-H\cdots I^-$ intermolecular interactions with two neighboring molecules (Fig. 2, Table 2). Two C-H moieties from the triazolium ring and one *ortho* C-H of the aryl ring interact with one iodide ion. In the asymmetric unit of salt (3) (Fig. 3, Table 3), there are a total of three $C-H\cdots I^-$ intermolecular interactions, two from the triazolium C-H moieties, and one methine hydrogen atom from the isopropyl

Table 3	
Hydrogen-bond geometry (Å, $^{\circ}$) for salt (3).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C1-H1\cdots I1^i$	0.95	2.87	3.744 (2)	153
$C2-H2\cdots I1^{ii}$	0.95	2.94	3.800 (2)	151
$C3-H3\cdots I1^i$	1.00	3.18	4.033 (2)	145

Symmetry codes: (i) x + 1, y, z; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

 Table 4

 Hydrogen-bond geometry (Å, °) for salt (4).

		,	·	
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1-H1\cdots I1^i$	0.95	2.85	3.707 (4)	150
$C2-H2\cdots I1^{ii}$	0.95	2.94	3.811 (4)	153
$C3-H3B\cdots I1^{iii}$	0.98	3.10	4.079 (6)	176

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x, -y, z - \frac{1}{2}$; (iii) x, y, z - 1.

Table 5Hydrogen-bond geometry (Å, $^{\circ}$) for salt (5).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
C1−H1···Br1	0.95	2.59	3.455 (3)	151
$C2-H2\cdots Br1^{i}$	0.95	2.75	3.644 (3)	156
$C11 - H11 \cdots O1^{ii}$	0.95	2.55	3.247 (4)	130
$O1-H1A\cdots Br1^{ii}$	0.95 (6)	2.42 (6)	3.365 (3)	172 (4)
$O1 - H1B \cdots Br1$	0.92 (7)	2.43 (7)	3.341 (3)	170 (5)

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 2, y, -z + \frac{1}{2}$.

group because the aryl ring does not lie on the plane of the triazolium ring. For salts (4) and (5) (Figs. 4 and 5, Tables 4 and 5), there are only a total of two $C-H\cdots I/Br^-$ intermolecular interactions, both from the triazole ring's C-H groups. However, in salt (5), a water molecule is in the asymmetric unit along the plane of the triazole and phenyl rings and is also interacting with the Br^- ion and the *ortho* C-H of the phenyl ring. A square-shaped hydrogen-bonding network is formed between two bromide ions and water molecules (Fig. 6 and Table 5). Thus, each bromide ion has two acceptor interactions with water hydrogen atoms and one acceptor interaction with the C-H of the triazolium ring, and each water molecule has two donor interactions with the bromide ions and one

Donor-acceptor interactions of bromide ions and water molecules with each other, with the triazolium C–H, and the *ortho* C–H of the aryl ring found in salt (5). H atoms not participating in the interactions are not shown. For symmetry codes, see Table 5.

Figure 7

Layered structure observed in the packing of nearly flat cations with iodides. (a) Salt (1) viewed along the a axis; (b) salt (2) viewed along the a axis; and (c) salt (4) viewed along the b axis.

acceptor interaction with the *ortho* C-H of the aryl ring (Figs. 5 and 6, Table 5).

Salts (1), (2), and (4) pack as layered sheets as shown in Fig. 7. In salt (1), there is an additional intermolecular interaction between the triazolium carbon and the iodide ion $(C1 \cdots I1)$ with a distance of 3.546 (4) Å between layers along the unit cell c axis (Fig. 8). While an anion- π interaction is not common, similar interactions have been reported in the literature, especially in supramolecular systems (Chifotides & Dunbar, 2013). Each cation in the sheet is further stabilized by an $F \cdot \cdot F$ interaction with a distance of 2.889 (5) Å between neighboring cations (Fig. 8). $C-F \cdots F-C$ contacts are reported in the literature to be weak but still relevant for crystal packing (Chopra, 2012). In salt (2), the iodide ion between layers is interacting with both the triazolium carbon $[C1 \cdots I1 \text{ distance of } 3.532 \text{ (4) Å}, \text{ Fig. 9] and the methine}$ hydrogen atom of the isopropyl group (C3-H3...I1, Fig. 9, Table 2), in addition to the three hydrogen-bonding interactions with the ortho hydrogen atom and triazolium hydrogen atom of a cation within the sheet (Figs. 2 and 9, Table 2). Salt (4) also demonstrates iodide ion interaction with both the triazolium carbon [C1 \cdots I1 distance of 3.503 (3) Å, Fig. 10] and the methyl hydrogen atom (C3 $-H3\cdots$ I1; Fig. 10,

Figure 8

Salt (1) showing intermolecular interactions between layers and neighboring cations. H atoms not participating in intermolecular interactions are not shown. [Symmetry codes: (iv) -x, -y, -z + 1; (v) $x - \frac{1}{2}$, $-y - \frac{1}{2}$, z.]

Salt (2) showing intermolecular interactions between layers and neighboring cations. H atoms not participating in intermolecular interactions are not shown. [Symmetry codes: (iv) $-x + \frac{1}{2}$, y, $z + \frac{1}{2}$; (v) $-x + \frac{1}{2}$, y, $z - \frac{1}{2}$.]

Table 4) in alternating layers, in addition to the hydrogen bonding with the neighboring cation's triazolium hydrogen atoms (Fig. 3, Table 4). The structure is stabilized further by π - π interactions between any carbon atoms in alternating layers

Salt (4) showing intermolecular interactions between layers and neighboring cations as viewed along the *a* axis. H atoms not participating in intermolecular interactions are not shown. [Symmetry codes: (iv) x, -y, $z - \frac{1}{2}$; (v) x, -y, $z + \frac{1}{2}$.]

Figure 11

 π - π interactions between the triazolium and phenyl rings in salt (5). H atoms not participating in the interactions are omitted. [Symmetry codes: (ii) -x + 2, y, $-z + \frac{1}{2}$; (iii) -x + 2, -y, -z; (iv) x, -y, $z - \frac{1}{2}$.]

 $[C6 \cdots C9 \text{ with a distance of } 3.384 (5) \text{ Å}]$ and an aryl carbon atom with a triazolium carbon atom $[C1 \cdots C8$ with a distance of 3.282 (4) Å], also in alternating layers (Fig. 10). In salt (5) there are π -interactions [C11···C11 with a distance of 3.220 (5) Å and C1···C12 with a distance of 3.335 (4) Å] between triazolium and aryl rings in alternating layers which are closely associated with the donor-acceptor interactions of the bromide ions and water molecules (Figs. 6 and 11). Extending the layers further reveals another π - π interaction $[C1 \cdot \cdot \cdot C13]$ with a distance of 3.370 (4) Å] between the triazolium cation and aryl rings (Fig. 12), and a π - π interaction $[C2 \cdots O1, 3.143 (5) \text{ Å}]$ between the carbon atom of the triazole ring and the oxygen atom of the water molecule (Fig. 12*a*). This triazole–phenyl π stacking is parallel with the *c* axis (Fig. 12b). The extended sheet network in salt (3) passes diagonally through the cell, but there are no significant intermolecular interactions between cations, as shown in Fig. 13.

(a)

Figure 12

(a) Extended π - π interactions between triazolium and phenyl rings in salt (5). (b) Layered structure observed in the packing of nearly flat triazole and phenyl rings with a twisted benzyl ring of the cation in salt (5). H atoms not participating in the interactions are omitted. [Symmetry codes: (ii) -x + 2, y, $-z + \frac{1}{2}$; (iii) -x + 2, -y, -z; (iv) x, -y, $z - \frac{1}{2}$.]

Figure 13 Extended sheet network in salt (3).

Interestingly, when there is *para*-substitution on the aryl ring [salts (1) and (2)], there are no observed $\pi - \pi$ interactions between the phenylene and triazole rings. The observed interactions are predominantly from the triazolium carbon atom with the iodide ion. The absence of the para-substituents allows $\pi - \pi$ interactions between the phenyl and triazole rings as demonstrated in salts (4) and (5). However, to facilitate $\pi - \pi$ interaction, the aryl ring needs to be co-planar with the triazolium ring; thus there are no π - π interactions in salt (3). Salt (5) exhibited the lowest melting-point temperature, possibly due to the presence of water in the crystal lattice, and thus will not be included in the discussion here. The higher melting points of salts (1), (2) and (4) compared to salt (3) may reflect the layering of the triazolium-aryl cation core sheets and the resulting inter-layer interactions. As predicted by Strassner, the electron-withdrawing substituent in the aryl ring found in salt (1) increased the melting point when compared to salt (2), which contains an electron-donating substituent on the aryl ring (Meyer & Strassner, 2011). The π - π interactions between the phenyl and triazole rings in salt (4) likely facilitate the increase in melting-point temperature.

In summary, for 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts, the predominant intermolecular interaction is the C– $H \cdot \cdot \cdot$ halide hydrogen bond between the hydrogen atoms in the triazolium cation and the halide ions forming extended sheets. For salts with *para*-substitution on the aryl ring, π - π interactions between the triazolium carbon and the halide are present. The melting points of these salts agree with substituent inductive effects predictions. For salts without the *para*substitution on the aryl ring, π - π interactions displayed by the layers are between the triazolium and aryl rings.

4. Database survey

Salt (3) is one of the azolium salts that was utilized by Abdellah in the direct electrochemical reduction of the salt to form the *N*-heterocyclic carbene (Abdellah *et al.*, 2011). Salt

(4) is a carbene-precursor to phosphorescent platinum(II)– NHC complexes; the crystal structure as a carbene ligand is also reported (Tenne *et al.*, 2013). Triazolium cation (5) was used in the investigation of kinetics and mechanism of azocoupling (Becker *et al.*, 1991).

5. Synthesis and crystallization

General Methods. All salts were synthesized in two steps. The first step is an intramolecular transamination pathway similar to literature methods (Meyer & Strassner, 2011; Naik et al., 2008; Holm et al., 2010). The products of this transamination step are 4-(4-fluorophenyl)-1,2,4-triazole as the salt (1) precursor, 4-(4-methylphenyl)-1,2,4-triazole as the salt (2) precursor, and 4-(phenyl)-1,2,4-triazole as salts (3), (4) and (5) precursor. In our attempts, we utilized a microwave reactor to shorten the reaction time from 24 hrs to roughly 15-30 mins with 20-70% yields (Meyer & Strassner, 2011; Naik et al., 2008; Holm et al., 2010). The second step is a nucleophilic substitution between the first-step products, 4-aryl-1,2,4-triazoles, and an alkyl halide (2-iodopropane, iodomethane, and benzyl bromide). This synthetic approach was used in the literature (Meyer & Strassner, 2011; Holm et al., 2010), but in our attempts we again used the microwave reactor to shorten the reaction time from 48 hrs to 10-30 mins with 10-70% yields (Meyer & Strassner, 2011; Holm et al., 2010).

N,N-dimethylformamide azine dihydrochloride (DMFA--2HCl) was synthesized following literature methods (Naik et al., 2008; Holm et al., 2010). All other reagents and solvents were purchased from Sigma-Aldrich. Tetrahydrofuran (THF) and isopropanol were dried with molecular sieves (4Å). A Biotage microwave reactor was used for all synthetic preparations. All NMR spectra were recorded on a JEOL 400 MHz spectrometer. ¹H and ¹³C NMR chemical shifts were determined by reference to residual ¹H and ¹³C solvent peaks. All thermal analysis experiments were performed on a TA model TGA Q500 thermal gravimetric analyzer and TA model DSC Q100 differential scanning calorimeter. For TGA experiments, crystal samples with masses between 0.4 to 1.4 mg were loaded onto platinum pans. Dry grade nitrogen gas was used for all samples with a balance purge rate of 40.00 mL/min and a sample purge rate of 60.00 mL/min. The temperature was ramped at 20.00 K per minute until a final temperature of 673.00 or 773.00 K was reached. For DSC experiments, crystal samples with masses between 3 and 9 mg were loaded onto platinum pans. Dry grade nitrogen gas was used for all samples with a sample purge range of 50.00 mL/ min. The samples were subjected to a heat/cool/heat cycle with a temperature ramp rate of 10.00 K per minute until a final temperature of 473–523 K was reached for the heating cycle, and a temperature ramp rate of 5.00 K per minute until a final temperature of 273 or 248 K was reached for the cooling cycle.

Step 1: synthesis of 4-aryl-1,2,4-triazoles. A 20 mL microwave reaction vessel with a stir bar was charged with 1:1 molar equivalents of *N*,*N*-dimethylformamide azine dihydro-chloride (DMFA·2HCl), and a *para*-substituted aryl amine (4-fluoroaniline or *p*-toluidine), or aniline. The microwave was

set to 443 or 453 K at normal absorbance, and run for 10-30 mins. Once completed, the mixture was washed with THF. dried with anhydrous magnesium sulfate and filtered. The solvent was removed in vacuo, and the remaining solid was washed with diethyl ether. Salt (1) precursor: 4-(4-fluorophenyl)-1,2,4-triazole. Brown oil (1.09 g, 72% yield).¹H NMR (400 MHz, CDCl₃): δ 8.44 (s, 2H, CH), 7.40–7.38 (m, 2H, Ar), 7.27-7.23 (m, 3H, Ar). Salt (2) precursor: 4-(4-methylphenyl)-**1.2.4-triazole.** Brown solid (0.26 g, 27% vield). ¹H NMR (400 MHz, CDCl₃): δ 8.45 (s, 2H, CH), 7.35–7.32 (d, 2H, Ar), 7.28-7.2 (d, 2H, Ar), 2.43 (s, 3H, Me). The proton spectrum values are the same as the literature values (Holm et al., 2010). Salts (3), (4) and (5) precursor: 4-phenyl-1,2,4-triazole. Brown solid (0.303 g, 22% yield). ¹H NMR(400 MHz, CDCl₃): δ 8.46 (s, 2H, CH), 7.54–7.49 (m, 2H, Ar) 7.47–7.42 (m, 1H, Ar), 7.39–7.36 (*m*, 2H, Ar). ¹³C NMR (101 MHz, CDCl₂): δ 141.5, 133.9, 130.4, 129.1, 122.2. The proton and carbon spectra are the same as the literature values (Meyer & Strassner, 2011; Holm, et al., 2010).

Step 2: synthesis of 1-alkyl-4-aryl-1,2,4-triazole halides. A 20 mL microwave reaction vessel with a stir bar was charged with 1:2 molar equivalents of 4-aryl-1,2,4-triazole, a halidesubstituted alkyl group (2-iodopropane, iodomethane, and benzyl bromide), and THF (5 mL). The microwave was set to 393-433 K at high absorbance for 10-30 mins. The resulting mixture was vacuum filtered, and washed with diethyl ether (3 \times 10 mL). The solid product was recrystallized from hot isopropanol and placed in the refrigerator for several days. Salt (1): 1-isopropyl-4-(4-fluorophenyl)-1,2,4-triazol-1-ium iodide. Needle-like colorless crystals (0.070 g, 11% yield). ¹H NMR (400 MHz, DMSO-d₆): δ 10.70 (s, 1H, CH), 9.73 (s, 1H, CH), 7.94-7.90 (dd, 2H, Ar), 7.63-7.60 (dd, 2H, Ar), 4.84-4.82 (sept, 1H, *i*Pr), 1.61–1.59 (d, 6H, *i*Pr).¹³C NMR (101 MHz, DMSO d_6): δ 164.0, 161.5, 143.1, 140.8, 128.8, 125.5, 117.3, 117.1, 55.8, 21.3. Decomposition temp: 516.4 K. Salt (2): 1-isopropyl-4-(4methylphenyl)-1,2,4-triazol-1-ium iodide. Colorless prismatic crystals (0.22 g, 54% yield). ¹H NMR (400 MHz, DMSO- d_6): δ 10.68 (s, 1H, CH), 9.73 (s, 1H,), 7.75-7.72 (dd, 2H, Ar), 7.71-7.50 (d, 2H, Ar), 4.88-4.78 (sept, 1H, iPr), 2.41 (s, 3H, Me), 1.60–1.58 (d, 6H, *i*Pr).¹³C NMR (101 MHz, DMSO- d_6): δ 142.7, 140.3, 140.2, 130.4, 129.8, 122.3, 55.6, 21.1, 20.7. Decomposition temp: 500.4 K. Salt (3): 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide. Colorless prismatic crystals (0.107 g, 24% yield). ¹H NMR (400 MHz, DMSO- d_6): δ 10.73 (s, 1H, CH), 9.77 (s, 1H, CH), 7.86–7.85 (d, 2H, Ar), 7.73–7.69 (t, 2H, Ar), 7.66-7.62 (t, 1H, Ar), 4.88-4.81 (sept, 1H, iPr), 1.60–1.58 (d, 6H, Me). ¹³C NMR (101 MHz, DMSO- d_6): δ 142.8, 140.4, 132.2, 130.5, 130.2, 122.6, 55.7, 21.2. Decomposition temp: 500.9 K. Salt (4): 1-methyl-4-phenyl-1,2,4-triazol-1ium iodide. Colorless prism crystals (0.144 g, 70% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.77 (*s*, 1H, CH), 9.76 (*s*, 1H, CH), 7.84–7.81 (dt, 2H, Ar), 7.73–7.66 (tt, 2H, Ar), 7.65–7.62 (*tt*, 1H, Ar), 4.15 (*s*, 3H, Me). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 142.7, 142.0, 132.1, 130.6, 130.3, 122.5, 39.0. Decomposition temp: 506.2 K.The proton and carbon spectroscopic values are the same as the literature values (Tenne et al., 2013). Salt (5): 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide. Colorless

Table 6 Experimental details.

	Salt (1)	Salt (2)	Salt (3)
Crystal data			
Chemical formula	$C_{11}H_{13}FN_3^+ \cdot I^-$	$C_{12}H_{16}N_3^+ \cdot I^-$	$C_{11}H_{14}N_3^+ \cdot I^-$
M_r	333.14	329.18	315.15
Crystal system, space group	Orthorhombic, Pccn	Orthorhombic, Pccn	Monoclinic, $P2_1/n$
Temperature (K)	173	173	173
a, b, c (Å)	16.396 (3), 21.732 (4), 7.2412 (12)	15.843 (3), 21.933 (4), 7.8250 (14)	5.9326 (11), 17.826 (3), 12.129 (2)
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 102.897 (7), 90
$V(\dot{A}^3)$	2580.1 (7)	2719.0 (8)	1250.3 (4)
Z	8	8	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	2.47	2.34	2.54
Crystal size (mm)	$0.71 \times 0.05 \times 0.02$	$0.52 \times 0.12 \times 0.04$	$0.80 \times 0.40 \times 0.10$
Data collection			
Diffractometer	Rigaku XtaLAB mini	Rigaku XtaLAB mini	Rigaku XtaLAB mini
Absorption correction	Multi-scan (REQAB; Rigaku, 1998)	Multi-scan (REQAB; Rigaku, 1998)	Multi-scan (REQAB; Rigaku, 1998)
T_{\min}, T_{\max}	0.671, 0.952	0.564, 0.911	0.356, 0.776
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	17829, 2632, 1872	16099, 2767, 2150	12823, 2858, 2582
R _{int}	0.073	0.051	0.044
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.625	0.625	0.649
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.077, 1.03	0.031, 0.065, 1.04	0.023, 0.055, 1.09
No. of reflections	2632	2767	2858
No. of parameters	147	148	138
No. of restraints	0	0	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.60, -0.58	0.43, -0.36	0.40, -0.69

Salt (4) Salt (5) Crystal data $C_{15}H_{14}N_3^+ \cdot Br^- \cdot H_2O$ Chemical formula $C_9H_{10}N_3^+ \cdot I^-$ 287.10 334.22 M_r Monoclinic, C2/c Crystal system, space group Monoclinic, Cc Temperature (K) 173 173 7.660 (2), 16.912 (5), 8.412 (3) 24.783 (6), 8.996 (2), 13.089 (3) a, b, c (Å) $\begin{array}{c} \alpha, \beta, \gamma \ (^{\circ}) \\ V \ (\text{\AA}^{3}) \end{array}$ 90, 101.137 (7), 90 90, 100.068 (7), 90 2873.3 (13) 1069.2 (6) Ζ 4 8 Radiation type Μο Κα Μο Κα $\mu \,({\rm mm}^{-1})$ 2.96 2.86 $0.31 \times 0.23 \times 0.13$ $0.60 \times 0.37 \times 0.17$ Crystal size (mm) Data collection Rigaku XtaLAB mini Rigaku XtaLAB mini Diffractometer Absorption correction Multi-scan (REQAB; Rigaku, 1998) Multi-scan (REQAB; Rigaku, 1998) 0.439, 0.681 0.321, 0.614 T_{\min}, \bar{T}_{\max} No. of measured, independent and 5472, 2420, 2359 6672, 3259, 2630 observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ 0.020 0.031 $(\sin \theta / \lambda)_{max} ({
m \AA}^{-1})$ 0.649 0.650 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.018, 0.037, 1.05 0.043, 0.098, 1.08 No. of reflections 2420 3259 No. of parameters 119 189 No. of restraints 2 0 H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å⁻³) 0.18, -0.360.75, -0.63Absolute structure Flack x determined using 1112 quotients $[(I^{\scriptscriptstyle +})-(I^{\scriptscriptstyle -})]/[(I^{\scriptscriptstyle +})+(I^{\scriptscriptstyle -})]$ (Parsons et al., 2013) Absolute structure parameter -0.012(18)

Computer programs: CrystalClearSM Expert (Rigaku, 2011), SIR97 (Altomare et al., 1999), SHELXL2014 (Sheldrick, 2015), CrystalStructure (Rigaku, 2010) and Mercury (Macrae et al., 2006).

prismatic crystals (0.065 g, 10% yield).¹H NMR (400 MHz, DMSO- d_6) δ 11.05 (s, 1H, CH), 9.81 (s, 1H, CH), 7.87–7.84 (dt, 1H, Ar), 7.85–7.84 (dd, 1H, Ar), 7.72–7.68 (tt, 2H, Ar), 7.66–7.62 (tt, 1H, Ar), 7.56 (m, 2H, Bn), 7.47–7.41 (m, 3H, Bn), 5.71 (s, 2H, CH₂). ¹³C NMR (101 MHz, DMSO- d_6) δ 143.4, 141.9, 133.0, 132.2, 130.5, 130.2, 129.1, 129.0, 128.9, 122.6, 55.2. Decomposition temp: 431.8 K.

Melting points: salt (1), m.p.: 512.8 K; salt (2), m.p.: 489.4 K; salt (3), m.p.: 455.3 K; salt (4), m.p.: 505.7 K; salt (5), m.p.: 389.2 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6. H atoms for salts (1)–(4) were placed in calculated positions and allowed to ride on their parent atoms at C–H distances of 0.95 Å for the triazolium and aryl rings, 0.98 Å for the methyl groups, and 1.00 Å for the methine group. H atoms for salt (5) were treated with a mixture of independent and constrained refinement. The C– H distances are 0.95 Å for the triazolium and aryl rings, 0.99 Å for the methylene group, and 0.95 (6) Å and 0.92 (7) Å for water. Salt (4) crystallized in the non-centrosymmetric space group *Cc* with a Flack parameter of -0.01 (2) indicating the absolute structure is well determined.

Acknowledgements

For financial support, we are indebted to the University of St. Thomas start-up funds, Partnership in Learning and Research Grant funds for MAG; work-study, Young Scholars and Collaborative Inquiry grants for MT, MS, TP and MA; the NSF–MRI grant No. 095322 'MRI:R2: Acquisition of a 400 MHz Nuclear Magnetic Resonance (NMR) Spectrometer'; St. Catherine University and the NSF–MRI grant No. 1125975 'MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Molecular Structure Facility'. We would like to also acknowledge Dr Victor Young (UMN–Twin Cities) and Dr Steve Berry (UMN–Duluth) with

their assistance while gathering preliminary data, and Dr William Ojala (UST) for providing helpful discussions with this project.

References

- Abdellah, I., Cassirame, B., Condon, S., Nedelec, J. & Pichon, C. (2011). Curr. Top. Electrochem. 16, 81–91.
- Ahrens, S., Peritz, A. & Strassner, T. (2009). Angew. Chem. Int. Ed. 48, 7908–7910.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Becker, H. G. O., Al Kurdi, H., Gwan, K. M. & Schütz, R. (1991). J. Prakt. Chem. 333, 7–18.
- Chifotides, H. T. & Dunbar, K. R. (2013). Acc. Chem. Res. 46, 894– 906.
- Chopra, D. (2012). Cryst. Growth Des. 12, 541-546.
- Dwivedi, S., Gupta, S. & Das, S. (2014). *Curr. Organocatal.* (1), 13–39. Holm, S. C., Siegle, A. F., Loos, C., Rominger, F. & Straub, B. F.
- (2010). Synthesis, pp. 2278–2286.
 Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.
- Mochida, T., Miura, Y. & Shimizu, F. (2011). Cryst. Growth Des. 11, 262–268.
- Naik, A. D., Marchand-Brynaert, J. & Garcia, Y. (2008). Synthesis, pp. 149–154.
- Nelson, D. J. (2015). Eur. J. Inorg. Chem. pp. 2012-2027.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Porcar, R., Ríos-Lombardía, N., Busto, E., Gotor-Fernández, V., Montejo-Bernardo, J., García-Granda, S., Luis, S. V., Gotor, V., Alfonso, I. & García-Verdugo, E. (2013). *Chem. Eur. J.* 19, 892–904.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Strassner, T., Unger, Y., Meyer, D., Molt, O., Münster, I. & Wagenblast, G. (2013). *Inorg. Chem. Commun.* **30**, 39–41.
- Tenne, M., Metz, S., Münster, I., Wagenblast, G. & Strassner, T. (2013). Organometallics, 32, 6257–6264.

Acta Cryst. (2015). E71, 628-635 [doi:10.1107/S2056989015009019]

Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts

Marites A. Guino-o, Meghan O. Talbot, Michael M. Slitts, Theresa N. Pham, Maya C. Audi and Daron E. Janzen

Computing details

For all compounds, data collection: *CrystalClearSM Expert* (Rigaku, 2011); cell refinement: *CrystalClearSM Expert* (Rigaku, 2011); data reduction: *CrystalClearSM Expert* (Rigaku, 2011); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *Mercury* (Macrae *et al.*, 2006).

(salt1) 4-(4-Fluorophenyl)-1-isopropyl-1,2,4-triazol-1-ium iodide

$D_x = 1.715 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 13432 reflections $\theta = 3.1-26.5^{\circ}$ $\mu = 2.47 \text{ mm}^{-1}$ T = 173 K Needle, colorless $0.71 \times 0.05 \times 0.02 \text{ mm}$
2632 independent reflections 1872 reflections with $I > 2\sigma(I)$ $R_{int} = 0.073$ $\theta_{max} = 26.4^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -16 \rightarrow 20$ $k = -27 \rightarrow 27$ $l = -9 \rightarrow 9$
Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0311P)^2 + 1.7321P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.60$ e Å ⁻³ $\Delta\rho_{min} = -0.58$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.12779 (2)	0.10735 (2)	0.28479 (4)	0.03130 (11)
F1	0.2967 (2)	-0.19361 (13)	0.6333 (6)	0.0857 (12)
N1	0.1110 (2)	0.01458 (15)	0.7471 (4)	0.0293 (8)
N2	0.0756 (2)	0.10799 (15)	0.7882 (5)	0.0304 (8)
N3	0.0050 (2)	0.07473 (17)	0.7909 (6)	0.0419 (10)
C1	0.1383 (3)	0.07255 (19)	0.7626 (5)	0.0287 (10)
H1	0.1936	0.0854	0.7559	0.034*
C2	0.0290 (3)	0.0188 (2)	0.7647 (7)	0.0427 (12)
H2	-0.0069	-0.0155	0.7584	0.051*
C3	0.0723 (3)	0.17592 (19)	0.8200 (6)	0.0313 (10)
Н3	0.0550	0.1833	0.9506	0.038*
C4	0.0089 (3)	0.2039 (2)	0.6936 (7)	0.0426 (12)
H4A	-0.0445	0.1859	0.7206	0.051*
H4B	0.0235	0.1955	0.5649	0.051*
H4C	0.0068	0.2485	0.7136	0.051*
C5	0.1571 (3)	0.2027 (2)	0.7944 (7)	0.0398 (11)
H5A	0.1764	0.1937	0.6692	0.048*
H5B	0.1944	0.1843	0.8846	0.048*
H5C	0.1552	0.2473	0.8129	0.048*
C6	0.1595 (3)	-0.0401 (2)	0.7140 (6)	0.0338 (10)
C7	0.2430 (3)	-0.03589 (19)	0.7138 (7)	0.0405 (12)
H7	0.2687	0.0027	0.7333	0.049*
C8	0.2895 (3)	-0.0880(2)	0.6851 (7)	0.0472 (13)
H8	0.3474	-0.0857	0.6827	0.057*
C9	0.2503 (3)	-0.1427 (2)	0.6601 (8)	0.0533 (14)
C10	0.1678 (3)	-0.1476 (2)	0.6597 (9)	0.0651 (17)
H10	0.1426	-0.1864	0.6401	0.078*
C11	0.1205 (3)	-0.0954 (2)	0.6883 (8)	0.0515 (14)
H11	0.0626	-0.0979	0.6899	0.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.03225 (18)	0.02454 (15)	0.03710 (17)	-0.00037 (12)	0.00019 (13)	-0.00025 (12)
F1	0.054 (2)	0.0306 (16)	0.173 (4)	0.0116 (15)	-0.011 (2)	-0.010 (2)
N1	0.031 (2)	0.0197 (16)	0.037 (2)	-0.0012 (15)	-0.0021 (15)	0.0028 (14)
N2	0.037 (2)	0.0243 (18)	0.0300 (18)	-0.0021 (16)	-0.0007 (16)	-0.0009 (17)
N3	0.027 (2)	0.030 (2)	0.069 (3)	-0.0055 (16)	0.0044 (19)	-0.007 (2)
C1	0.031 (3)	0.024 (2)	0.031 (2)	-0.0044 (18)	0.0006 (17)	-0.0012 (17)

C2	0.036 (3)	0.025 (2)	0.067 (4)	-0.006 (2)	0.000 (2)	-0.003 (2)
C3	0.039 (3)	0.023 (2)	0.032 (3)	0.0029 (19)	0.0006 (18)	-0.0027 (19)
C4	0.045 (3)	0.032 (2)	0.051 (3)	0.008 (2)	-0.001 (2)	0.001 (2)
C5	0.038 (3)	0.027 (2)	0.055 (3)	-0.0022 (19)	-0.003 (2)	-0.004 (2)
C6	0.031 (3)	0.027 (2)	0.043 (3)	0.0011 (19)	-0.003 (2)	0.000 (2)
C7	0.037 (3)	0.022 (2)	0.062 (3)	-0.005 (2)	0.000 (2)	-0.001 (2)
C8	0.033 (3)	0.035 (3)	0.073 (4)	-0.002 (2)	-0.001 (2)	-0.001 (2)
C9	0.044 (3)	0.028 (3)	0.089 (4)	0.004 (2)	-0.011 (3)	-0.004 (3)
C10	0.042 (4)	0.024 (3)	0.129 (5)	-0.004 (2)	-0.010 (3)	-0.003 (3)
C11	0.027 (3)	0.033 (3)	0.094 (4)	-0.004 (2)	-0.010 (3)	-0.001 (3)

Geometric parameters (Å, °)

F1—C9	1.356 (6)	C4—H4C	0.9800
N1—C1	1.342 (5)	С5—Н5А	0.9800
N1—C2	1.354 (6)	С5—Н5В	0.9800
N1—C6	1.450 (6)	С5—Н5С	0.9800
N2—C1	1.298 (5)	C6—C7	1.371 (6)
N2—N3	1.365 (5)	C6—C11	1.375 (6)
N2—C3	1.495 (5)	С7—С8	1.381 (6)
N3—C2	1.292 (6)	С7—Н7	0.9500
C1—H1	0.9500	C8—C9	1.364 (7)
С2—Н2	0.9500	C8—H8	0.9500
C3—C4	1.512 (6)	C9—C10	1.358 (7)
C3—C5	1.519 (6)	C10—C11	1.390 (7)
С3—Н3	1.0000	C10—H10	0.9500
C4—H4A	0.9800	C11—H11	0.9500
C4—H4B	0.9800		
C1—N1—C2	105.1 (4)	С3—С5—Н5А	109.5
C1—N1—C6	126.9 (4)	С3—С5—Н5В	109.5
C2—N1—C6	128.0 (4)	H5A—C5—H5B	109.5
C1—N2—N3	111.1 (3)	С3—С5—Н5С	109.5
C1—N2—C3	129.5 (4)	H5A—C5—H5C	109.5
N3—N2—C3	119.3 (3)	H5B—C5—H5C	109.5
C2—N3—N2	103.8 (4)	C7—C6—C11	121.6 (4)
N2—C1—N1	107.7 (4)	C7—C6—N1	119.5 (4)
N2—C1—H1	126.1	C11—C6—N1	118.9 (4)
N1—C1—H1	126.1	C6—C7—C8	119.8 (4)
N3—C2—N1	112.3 (4)	С6—С7—Н7	120.1
N3—C2—H2	123.9	С8—С7—Н7	120.1
N1—C2—H2	123.9	C9—C8—C7	118.3 (5)
N2—C3—C4	109.2 (3)	С9—С8—Н8	120.9
N2—C3—C5	109.0 (3)	С7—С8—Н8	120.9
C4—C3—C5	113.6 (4)	F1—C9—C10	119.6 (5)
N2—C3—H3	108.3	F1—C9—C8	117.8 (5)
С4—С3—Н3	108.3	C10—C9—C8	122.6 (5)
С5—С3—Н3	108.3	C9—C10—C11	119.5 (5)

C3—C4—H4A C3—C4—H4B H4A—C4—H4B C3—C4—H4C H4A—C4—H4C H4B—C4—H4C	109.5 109.5 109.5 109.5 109.5 109.5	C9—C10—H10 C11—C10—H10 C6—C11—C10 C6—C11—H11 C10—C11—H11	120.3 120.3 118.3 (5) 120.9 120.9
C1 - N2 - N3 - C2 $C3 - N2 - N3 - C2$ $N3 - N2 - C1 - N1$ $C3 - N2 - C1 - N1$ $C2 - N1 - C1 - N2$ $C6 - N1 - C1 - N2$ $N2 - N3 - C2 - N1$ $C1 - N1 - C2 - N3$ $C6 - N1 - C2 - N3$ $C1 - N2 - C3 - C4$ $N3 - N2 - C3 - C4$ $C1 - N2 - C3 - C5$ $N3 - N2 - C3 - C5$	$\begin{array}{c} -0.4 (5) \\ -178.2 (4) \\ 0.1 (5) \\ 177.7 (4) \\ 0.2 (4) \\ 178.8 (4) \\ 0.6 (5) \\ -0.5 (5) \\ -179.0 (4) \\ 132.0 (5) \\ -50.6 (5) \\ 7.3 (6) \\ -175.3 (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-175.2 (5) -175.1 (4) 3.1 (7) 0.7 (8) 179.0 (4) -0.9 (8) -179.6 (5) 1.0 (9) 179.6 (6) -1.0 (10) -0.6 (8) -178.9 (5) 0.7 (9)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C1—H1…I1 ⁱ	0.95	2.97	3.912 (4)	170
C2—H2···I1 ⁱⁱ	0.95	2.83	3.774 (5)	173
C7—H7…I1 ⁱ	0.95	2.86	3.801 (4)	170
C8—H8····N3 ⁱⁱⁱ	0.95	2.60	3.548 (6)	174
C11—H11···I1 ⁱⁱ	0.95	3.13	4.083 (5)	177

Symmetry codes: (i) -x+1/2, y, z+1/2; (ii) -x, -y, -z+1; (iii) x+1/2, -y, -z+3/2.

(salt2) 1-Isopropyl-4-(4-methylphenyl)-1,2,4-triazol-1-ium iodide

Crystal data	
$C_{12}H_{16}N_3^{+}\cdot I^-$ $M_r = 329.18$ Orthorhombic, <i>Pccn</i> a = 15.843 (3) Å b = 21.933 (4) Å c = 7.8250 (14) Å V = 2719.0 (8) Å ³ Z = 8 F(000) = 1296	$D_x = 1.608 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 12738 reflections $\theta = 3.1-26.4^{\circ}$ $\mu = 2.34 \text{ mm}^{-1}$ T = 173 K Prism, colorless $0.52 \times 0.12 \times 0.04 \text{ mm}$
Data collection	
Rigaku XtaLAB mini diffractometer Detector resolution: 6.849 pixels mm ⁻¹ ω scans	Absorption correction: multi-scan (<i>REQAB</i> ; Rigaku, 1998) $T_{min} = 0.564, T_{max} = 0.911$ 16099 measured reflections

2767 independent reflections	$h = -17 \rightarrow 19$
2150 reflections with $I > 2\sigma(I)$	$k = -27 \rightarrow 27$
$R_{\rm int} = 0.051$	$l = -9 \rightarrow 9$
$\theta_{\rm max} = 26.4^{\circ}, \theta_{\rm min} = 3.1^{\circ}$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.065$	$w = 1/[\sigma^2(F_o^2) + (0.0241P)^2 + 1.7237P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
2767 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
148 parameters	$\Delta \rho_{\rm max} = 0.43 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.39750 (2)	0.11566 (2)	0.28064 (3)	0.03506 (9)
N1	0.36095 (16)	0.01570 (12)	0.6774 (4)	0.0323 (7)
N2	0.40416 (16)	0.10301 (12)	0.7635 (4)	0.0323 (7)
N3	0.47092 (18)	0.06448 (14)	0.7832 (4)	0.0474 (8)
C1	0.3387 (2)	0.07437 (14)	0.7003 (4)	0.0327 (8)
H1	0.2852	0.0918	0.6752	0.039*
C2	0.4431 (2)	0.01195 (17)	0.7293 (5)	0.0466 (10)
H2	0.4758	-0.0243	0.7266	0.056*
C3	0.4142 (2)	0.16834 (15)	0.8098 (5)	0.0360 (8)
Н3	0.4272	0.1708	0.9347	0.043*
C4	0.3329 (2)	0.20152 (16)	0.7779 (6)	0.0558 (12)
H4A	0.2877	0.1826	0.8450	0.067*
H4B	0.3188	0.1993	0.6561	0.067*
H4C	0.3391	0.2443	0.8117	0.067*
C5	0.4878 (2)	0.19528 (16)	0.7123 (5)	0.0483 (10)
H5A	0.4763	0.1933	0.5894	0.058*
H5B	0.5392	0.1721	0.7379	0.058*
H5C	0.4958	0.2379	0.7465	0.058*
C6	0.3098 (2)	-0.03293 (14)	0.6067 (4)	0.0335 (8)
C7	0.3493 (2)	-0.08364 (16)	0.5362 (5)	0.0417 (9)
H7	0.4090	-0.0858	0.5296	0.050*
C8	0.3000 (2)	-0.13047 (15)	0.4763 (5)	0.0449 (10)
H8	0.3269	-0.1655	0.4301	0.054*
C9	0.2121 (2)	-0.12853 (15)	0.4805 (5)	0.0387 (9)
C10	0.1751 (2)	-0.07632 (15)	0.5485 (5)	0.0401 (9)
H10	0.1153	-0.0731	0.5506	0.048*

C11	0.2231 (2)	-0.02902 (14)	0.6130 (5)	0.0377 (9)
H11	0.1966	0.0058	0.6612	0.045*
C12	0.1601 (3)	-0.18091 (17)	0.4159 (6)	0.0535 (11)
H12A	0.1066	-0.1655	0.3703	0.064*
H12B	0.1487	-0.2093	0.5099	0.064*
H12C	0.1910	-0.2022	0.3252	0.064*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.03260 (14)	0.02809 (12)	0.04449 (16)	0.00250 (9)	-0.00283 (10)	0.00031 (10)
N1	0.0298 (15)	0.0265 (14)	0.0406 (18)	0.0021 (11)	0.0055 (13)	0.0034 (12)
N2	0.0265 (15)	0.0293 (14)	0.0411 (18)	0.0028 (11)	0.0026 (13)	-0.0011 (12)
N3	0.0322 (16)	0.0385 (17)	0.071 (2)	0.0074 (13)	-0.0089 (17)	-0.0046 (16)
C1	0.0283 (17)	0.0266 (16)	0.043 (2)	0.0031 (14)	0.0050 (16)	0.0047 (15)
C2	0.036 (2)	0.036 (2)	0.068 (3)	0.0101 (17)	-0.003 (2)	-0.0004 (19)
C3	0.038 (2)	0.0299 (18)	0.040 (2)	-0.0017 (14)	0.0005 (16)	-0.0045 (15)
C4	0.039 (2)	0.0287 (19)	0.100 (4)	0.0033 (16)	0.004 (2)	-0.005 (2)
C5	0.039 (2)	0.042 (2)	0.064 (3)	-0.0091 (17)	0.006 (2)	-0.006 (2)
C6	0.0343 (19)	0.0263 (17)	0.040 (2)	0.0014 (15)	0.0069 (17)	0.0046 (14)
C7	0.034 (2)	0.035 (2)	0.057 (3)	0.0052 (16)	0.0123 (18)	-0.0020 (17)
C8	0.047 (2)	0.028 (2)	0.060 (3)	0.0077 (16)	0.015 (2)	-0.0016 (16)
C9	0.042 (2)	0.0297 (19)	0.044 (2)	-0.0033 (15)	0.0061 (18)	0.0026 (15)
C10	0.0319 (19)	0.037 (2)	0.051 (2)	0.0029 (16)	0.0060 (18)	0.0005 (17)
C11	0.035 (2)	0.0264 (17)	0.051 (3)	0.0067 (14)	0.0062 (18)	-0.0030 (16)
C12	0.055 (2)	0.041 (2)	0.065 (3)	-0.0058 (19)	0.012 (2)	-0.006 (2)

Geometric parameters (Å, °)

N1—C1	1.346 (4)	С5—Н5В	0.9800
N1—C2	1.365 (4)	C5—H5C	0.9800
N1-C6	1.449 (4)	C6—C11	1.377 (4)
N2—C1	1.310 (4)	C6—C7	1.390 (4)
N2—N3	1.363 (4)	C7—C8	1.372 (5)
N2—C3	1.487 (4)	С7—Н7	0.9500
N3—C2	1.304 (5)	C8—C9	1.394 (5)
C1—H1	0.9500	C8—H8	0.9500
С2—Н2	0.9500	C9—C10	1.392 (5)
C3—C4	1.500 (5)	C9—C12	1.502 (5)
C3—C5	1.514 (5)	C10—C11	1.383 (5)
С3—Н3	1.0000	C10—H10	0.9500
C4—H4A	0.9800	C11—H11	0.9500
C4—H4B	0.9800	C12—H12A	0.9800
C4—H4C	0.9800	C12—H12B	0.9800
С5—Н5А	0.9800	C12—H12C	0.9800
C1—N1—C2	105.5 (3)	C3—C5—H5C	109.5
C1—N1—C6	127.5 (3)	H5A—C5—H5C	109.5

C2—N1—C6	127.0 (3)	H5B—C5—H5C	109.5
C1—N2—N3	111.1 (3)	C11—C6—C7	120.8 (3)
C1—N2—C3	129.7 (3)	C11—C6—N1	119.9 (3)
N3—N2—C3	119.1 (3)	C7—C6—N1	119.3 (3)
C2—N3—N2	104.4 (3)	C8—C7—C6	118.6 (3)
N2—C1—N1	107.5 (3)	С8—С7—Н7	120.7
N2—C1—H1	126.2	С6—С7—Н7	120.7
N1—C1—H1	126.2	С7—С8—С9	122.5 (3)
N3—C2—N1	111.4 (3)	С7—С8—Н8	118.8
N3—C2—H2	124.3	С9—С8—Н8	118.8
N1—C2—H2	124.3	С10—С9—С8	117.1 (3)
N2—C3—C4	109.6 (3)	C10—C9—C12	121.8 (3)
N2—C3—C5	109.6 (3)	C8—C9—C12	121.1 (3)
C4—C3—C5	112.8 (3)	C11—C10—C9	121.6 (3)
N2—C3—H3	108.2	C11—C10—H10	119.2
С4—С3—Н3	108.2	С9—С10—Н10	119.2
С5—С3—Н3	108.2	C6-C11-C10	119.3 (3)
C3—C4—H4A	109.5	C6—C11—H11	120.3
C3—C4—H4B	109.5	C10—C11—H11	120.3
H4A—C4—H4B	109.5	C9—C12—H12A	109.5
C3—C4—H4C	109.5	C9—C12—H12B	109.5
H4A—C4—H4C	109.5	H12A—C12—H12B	109.5
H4B—C4—H4C	109.5	C9—C12—H12C	109.5
С3—С5—Н5А	109.5	H12A—C12—H12C	109.5
C3—C5—H5B	109.5	H12B—C12—H12C	109.5
H5A—C5—H5B	109.5		
C1—N2—N3—C2	0.1 (4)	C2-N1-C6-C11	158.4 (4)
C3—N2—N3—C2	-178.7 (3)	C1—N1—C6—C7	157.1 (3)
N3—N2—C1—N1	0.3 (4)	C2—N1—C6—C7	-20.4 (5)
C3—N2—C1—N1	178.9 (3)	C11—C6—C7—C8	-1.4 (5)
C2—N1—C1—N2	-0.5 (4)	N1—C6—C7—C8	177.3 (3)
C6—N1—C1—N2	-178.4 (3)	C6—C7—C8—C9	1.3 (6)
N2—N3—C2—N1	-0.4 (4)	C7—C8—C9—C10	0.2 (6)
C1—N1—C2—N3	0.6 (4)	C7—C8—C9—C12	-179.2 (4)
C6—N1—C2—N3	178.6 (3)	C8—C9—C10—C11	-1.6 (6)
C1—N2—C3—C4	1.5 (5)	C12—C9—C10—C11	177.9 (4)
N3—N2—C3—C4	-179.9 (3)	C7—C6—C11—C10	0.1 (5)
C1—N2—C3—C5	-122.8 (4)	N1—C6—C11—C10	-178.6 (3)
N3—N2—C3—C5	55.8 (4)	C9—C10—C11—C6	1.4 (6)
C1—N1—C6—C11	-24.1 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···I1 ⁱ	0.95	3.06	3.901 (3)	149
C2—H2…I1 ⁱⁱ	0.95	2.84	3.771 (4)	168

C3—H3…I1 ⁱⁱⁱ	1.00	3.00	3.870 (4)	146
C11—H11···I1 ⁱ	0.95	2.98	3.930 (3)	174

F(000) = 616

 $\theta = 3.4 - 27.6^{\circ}$

 $\mu = 2.54 \text{ mm}^{-1}$

Prism, colorless

 $0.80 \times 0.40 \times 0.10 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.674 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71075$ Å

Cell parameters from 11444 reflections

Hydrogen site location: inferred from

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0167P)^2 + 0.5394P]$

where $P = (F_0^2 + 2F_c^2)/3$

neighbouring sites

 $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta\rho_{\rm max} = 0.40 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$

Symmetry codes: (i) -*x*+1/2, *y*, *z*+1/2; (ii) -*x*+1, -*y*, -*z*+1; (iii) *x*, *y*, *z*+1.

(salt3) 1-Isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide

Crystal data

 $C_{11}H_{14}N_3^{+} \cdot I^ M_r = 315.15$ Monoclinic, $P2_1/n$ a = 5.9326 (11) Å b = 17.826 (3) Å c = 12.129 (2) Å $\beta = 102.897$ (7)° V = 1250.3 (4) Å³ Z = 4

Data collection

Rigaku XtaLAB mini	2858 independent reflections
diffractometer	2582 reflections with $I > 2\sigma(I)$
Detector resolution: 6.849 pixels mm ⁻¹	$R_{ m int} = 0.044$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.5^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(<i>REQAB</i> ; Rigaku, 1998)	$k = -23 \rightarrow 23$
$T_{\min} = 0.356, \ T_{\max} = 0.776$	$l = -15 \rightarrow 15$
12823 measured reflections	

-
Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.023$
$wR(F^2) = 0.055$
S = 1.09
2858 reflections

Special details

138 parameters 0 restraints

Refinement

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional	atomic	coordinates	and isotro	pric or e	auivalent	isotropic	displacement	parameters	$(Å^2$?]
1 1 0 0 1 0 1 0 1 0 1	aronne	coordinates	000000000000000000000000000000000000000		quittent	isonopie	anspracement	parameters	(* *	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.15256 (2)	0.20965 (2)	0.66252 (2)	0.02352 (6)	
N1	0.3956 (3)	0.19026 (11)	0.39549 (15)	0.0187 (4)	
N2	0.5118 (3)	0.29644 (10)	0.46845 (17)	0.0209 (4)	
N3	0.3012 (3)	0.31018 (12)	0.39771 (16)	0.0236 (4)	
C1	0.5686 (4)	0.22566 (13)	0.46767 (19)	0.0212 (5)	
H1	0.7062	0.2033	0.5101	0.025*	

C2	0.2350 (4)	0.24481 (13)	0.35485 (19)	0.0226 (5)
H2	0.0932	0.2359	0.3020	0.027*
C3	0.6455 (4)	0.35740 (13)	0.53664 (19)	0.0257 (5)
Н3	0.7619	0.3342	0.5999	0.031*
C4	0.7738 (5)	0.40192 (15)	0.4629 (2)	0.0392 (6)
H4A	0.6625	0.4228	0.3982	0.047*
H4B	0.8817	0.3688	0.4358	0.047*
H4C	0.8599	0.4428	0.5073	0.047*
C5	0.4824 (4)	0.40497 (14)	0.5871 (2)	0.0335 (6)
H5A	0.4001	0.3730	0.6308	0.040*
H5B	0.3705	0.4296	0.5262	0.040*
H5C	0.5710	0.4430	0.6369	0.040*
C6	0.3826 (4)	0.11147 (13)	0.36959 (18)	0.0205 (5)
C7	0.5430 (4)	0.08035 (15)	0.3150 (2)	0.0294 (5)
H7	0.6593	0.1105	0.2945	0.035*
C8	0.5291 (5)	0.00422 (16)	0.2914 (2)	0.0393 (6)
H8	0.6388	-0.0185	0.2556	0.047*
C9	0.3563 (4)	-0.03878 (15)	0.3195 (2)	0.0376 (6)
Н9	0.3462	-0.0907	0.3016	0.045*
C10	0.1980 (5)	-0.00676 (15)	0.3736 (2)	0.0349 (6)
H10	0.0800	-0.0368	0.3928	0.042*
C11	0.2112 (4)	0.06924 (14)	0.4001 (2)	0.0285 (5)
H11	0.1047	0.0916	0.4382	0.034*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01997 (9)	0.02622 (11)	0.02322 (10)	-0.00035 (5)	0.00235 (6)	-0.00040 (6)
N1	0.0184 (9)	0.0182 (9)	0.0187 (9)	0.0009 (7)	0.0021 (7)	-0.0004 (8)
N2	0.0204 (10)	0.0189 (10)	0.0220 (10)	0.0016 (7)	0.0015 (8)	0.0004 (8)
N3	0.0237 (10)	0.0198 (10)	0.0254 (10)	0.0050 (8)	0.0013 (8)	0.0028 (8)
C1	0.0205 (11)	0.0176 (11)	0.0235 (11)	0.0014 (9)	0.0009 (9)	-0.0013 (9)
C2	0.0206 (11)	0.0218 (13)	0.0236 (11)	0.0031 (9)	0.0011 (9)	0.0009 (10)
C3	0.0275 (12)	0.0162 (12)	0.0291 (12)	-0.0003 (9)	-0.0024 (9)	-0.0032 (10)
C4	0.0370 (14)	0.0268 (14)	0.0583 (18)	-0.0093 (11)	0.0202 (13)	-0.0114 (13)
C5	0.0430 (15)	0.0260 (14)	0.0333 (13)	-0.0031 (11)	0.0125 (11)	-0.0098 (11)
C6	0.0220 (10)	0.0183 (12)	0.0186 (10)	0.0023 (9)	-0.0008 (8)	0.0002 (9)
C7	0.0272 (12)	0.0267 (13)	0.0351 (13)	0.0014 (10)	0.0091 (10)	-0.0034 (11)
C8	0.0406 (15)	0.0309 (15)	0.0462 (16)	0.0097 (12)	0.0091 (12)	-0.0090 (13)
C9	0.0534 (17)	0.0160 (13)	0.0371 (14)	0.0016 (11)	-0.0032 (12)	-0.0042 (11)
C10	0.0454 (15)	0.0238 (14)	0.0340 (14)	-0.0097 (11)	0.0061 (11)	0.0029 (11)
C11	0.0350 (13)	0.0247 (13)	0.0271 (12)	-0.0025 (10)	0.0096 (10)	0.0004 (10)

Geometric parameters (Å, °)

N1—C1	1.348 (3)	С5—Н5А	0.9800
N1—C2	1.374 (3)	С5—Н5В	0.9800
N1—C6	1.437 (3)	С5—Н5С	0.9800

NO 61	1 20((2))	C(011	1 200 (2)
N2—C1	1.306 (3)	C6—C11	1.380 (3)
N2—N3	1.371 (3)	C6—C7	1.390 (3)
N2—C3	1.484 (3)	C7—C8	1.386 (4)
N3—C2	1.301 (3)	С7—Н7	0.9500
С1—Н1	0.9500	С8—С9	1.382 (4)
С2—Н2	0.9500	C8—H8	0.9500
C_2 C_5	1.515(3)	$C_0 = C_{10}$	1.384(4)
C3_C4	1.515(3)		1.364 (4)
C3	1.520 (3)	C9—H9	0.9500
С3—Н3	1.0000	C10—C11	1.390 (4)
C4—H4A	0.9800	С10—Н10	0.9500
C4—H4B	0.9800	C11—H11	0.9500
C4—H4C	0.9800		
C1—N1—C2	105 57 (19)	С3—С5—Н5А	109 5
C1 N1 C6	105.57(19) 126.54(10)	$C_2 C_5 H5R$	109.5
C1 = N1 = C0	120.34(19)		109.5
C_2 —NI—Co	127.88 (19)	H2A—C3—H2B	109.5
C1—N2—N3	111.62 (19)	С3—С5—Н5С	109.5
C1—N2—C3	127.22 (19)	H5A—C5—H5C	109.5
N3—N2—C3	121.14 (18)	H5B—C5—H5C	109.5
C2—N3—N2	103.99 (18)	C11—C6—C7	122.2 (2)
N2—C1—N1	107.3 (2)	C11—C6—N1	118.8 (2)
N2—C1—H1	126.4	C7—C6—N1	119.0 (2)
N1—C1—H1	126.4	C8—C7—C6	118.3 (2)
N3—C2—N1	111.6 (2)	С8—С7—Н7	120.9
N3—C2—H2	124.2	С6—С7—Н7	120.9
N1—C2—H2	124.2	C9—C8—C7	120.3(2)
$N_2 - C_3 - C_5$	108.96 (19)	C9_C8_H8	110.8
$N_2 C_3 C_4$	100.90(19) 100.27(10)	C7 C8 H8	110.8
112 - 03 - 04	109.27(19) 112.2(2)	C^{8} C^{0} C^{10}	119.0 120.5(2)
$C_3 = C_3 = C_4$	113.2 (2)	C_{8}	120.5 (5)
N2—C3—H3	108.4	C8-C9-H9	119.7
С5—С3—Н3	108.4	С10—С9—Н9	119.7
С4—С3—Н3	108.4	C9—C10—C11	120.1 (2)
C3—C4—H4A	109.5	C9—C10—H10	119.9
C3—C4—H4B	109.5	C11—C10—H10	119.9
H4A—C4—H4B	109.5	C6-C11-C10	118.5 (2)
C3—C4—H4C	109.5	С6—С11—Н11	120.8
H4A—C4—H4C	109.5	C10-C11-H11	120.8
H4B—C4—H4C	109.5		
C1N2N3C2	0.0(2)	C1-N1-C6-C11	1147(3)
C_{3} N2 N3 C_{2}	-1787(2)	C_{2} N1 C_{6} C_{11}	-637(3)
$C_3 - 1N_2 - 1N_3 - C_2$	1/0.7(2)	$C_1 = N_1 = C_0 = C_{11}$	-65.1(3)
$\frac{1}{1} \frac{1}{1} \frac{1}$	0.1(3)	$C_1 - N_1 - C_0 - C_1$	-03.1(3)
$C_3 = N_2 = C_1 = N_1$	1/8.8 (2)	C_2 —NI— C_0 — C_1	110.5 (3)
C2—N1—C1—N2	-0.2 (2)		-0.3 (4)
C6—N1—C1—N2	-178.9 (2)	NI-C6-C7-C8	179.6 (2)
N2—N3—C2—N1	-0.1 (2)	C6—C7—C8—C9	1.3 (4)
C1—N1—C2—N3	0.2 (3)	C7—C8—C9—C10	-1.3 (4)
C6—N1—C2—N3	178.9 (2)	C8—C9—C10—C11	0.1 (4)

C1—N2—C3—C5	-135.4 (2)	C7—C6—C11—C10	-0.9 (4)
N3—N2—C3—C5	43.1 (3)	N1-C6-C11-C10	179.3 (2)
C1—N2—C3—C4	100.5 (3)	C9—C10—C11—C6	0.9 (4)
N3—N2—C3—C4	-81.0 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H···A
C1—H1…I1 ⁱ	0.95	2.87	3.744 (2)	153
C2—H2···I1 ⁱⁱ	0.95	2.94	3.800 (2)	151
C3—H3…I1 ⁱ	1.00	3.18	4.033 (2)	145

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1/2, -*y*+1/2, *z*-1/2.

(salt4) 1-Methyl-4-phenyl-1,2,4-triazol-1-ium iodide

Crystal data

 $C_{9}H_{10}N_{3}^{+}\cdot I^{-}$ $M_{r} = 287.10$ Monoclinic, *Cc a* = 7.660 (2) Å *b* = 16.912 (5) Å *c* = 8.412 (3) Å β = 101.137 (7)° *V* = 1069.2 (6) Å³ *Z* = 4

Data collection

Rigaku XtaLAB mini diffractometer Detector resolution: 6.849 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*REQAB*; Rigaku, 1998) $T_{\min} = 0.439$, $T_{\max} = 0.681$ 5472 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.037$ S = 1.052420 reflections 119 parameters 2 restraints Hydrogen site location: inferred from neighbouring sites F(000) = 552 $D_x = 1.783 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71075 \mathbf{A} Cell parameters from 5405 reflections $\theta = 3.5-27.6^{\circ}$ $\mu = 2.96 \text{ mm}^{-1}$ T = 173 KPrism, colorless $0.31 \times 0.23 \times 0.13 \text{ mm}$

2420 independent reflections 2359 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -21 \rightarrow 21$ $l = -10 \rightarrow 10$

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0128P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.36 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 1112 quotients $[(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$ (Parsons et al., 2013) Absolute structure parameter: -0.012 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
I1	0.70097 (5)	0.18929 (2)	0.53544 (5)	0.03177 (8)
N1	0.4911 (4)	0.06092 (17)	0.1783 (3)	0.0223 (6)
N2	0.7314 (6)	0.0784 (2)	0.0734 (5)	0.0399 (12)
N3	0.6399 (4)	0.14778 (18)	0.0768 (4)	0.0271 (7)
C1	0.4981 (5)	0.1377 (2)	0.1394 (4)	0.0258 (8)
H1	0.4152	0.1774	0.1546	0.031*
C2	0.6381 (6)	0.0273 (2)	0.1362 (5)	0.0362 (10)
H2	0.6682	-0.0270	0.1511	0.043*
C3	0.7052 (12)	0.2216 (2)	0.0167 (8)	0.0414 (12)
H3A	0.6248	0.2651	0.0304	0.050*
H3B	0.7095	0.2158	-0.0984	0.050*
H3C	0.8247	0.2332	0.0780	0.050*
C4	0.3552 (5)	0.0234 (2)	0.2475 (5)	0.0227 (8)
C5	0.2349 (7)	0.0696 (3)	0.3098 (6)	0.0333 (11)
Н5	0.2446	0.1256	0.3107	0.040*
C6	0.0998 (6)	0.0327 (3)	0.3709 (6)	0.0378 (11)
H6	0.0156	0.0636	0.4130	0.045*
C7	0.0876 (7)	-0.0481 (3)	0.3707 (5)	0.0399 (12)
H7	-0.0050	-0.0730	0.4128	0.048*
C8	0.2093 (7)	-0.0936 (3)	0.3098 (5)	0.0381 (11)
H8	0.1999	-0.1496	0.3106	0.046*
C9	0.3449 (7)	-0.0583 (2)	0.2475 (5)	0.0296 (10)
Н9	0.4288	-0.0895	0.2057	0.035*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.03583 (13)	0.02441 (11)	0.03571 (12)	-0.00729 (17)	0.00855 (9)	-0.00034 (18)
N1	0.0210 (15)	0.0225 (15)	0.0248 (14)	0.0018 (13)	0.0077 (12)	0.0007 (12)
N2	0.035 (3)	0.0347 (19)	0.056 (3)	0.0041 (18)	0.024 (2)	0.0023 (16)
N3	0.0305 (17)	0.0241 (16)	0.0293 (16)	-0.0016 (14)	0.0120 (14)	0.0002 (13)
C1	0.0268 (19)	0.0248 (19)	0.0268 (18)	0.0041 (15)	0.0080 (16)	-0.0011 (15)
C2	0.033 (2)	0.025 (2)	0.056 (3)	0.0062 (17)	0.023 (2)	-0.0004 (18)
C3	0.055 (2)	0.0333 (19)	0.043 (3)	-0.014 (3)	0.026 (2)	-0.003 (3)
C4	0.0172 (18)	0.032 (2)	0.0181 (18)	0.0002 (17)	0.0023 (15)	0.0020 (16)
C5	0.031 (3)	0.036 (3)	0.034 (3)	0.001 (2)	0.009 (2)	-0.006 (2)
C6	0.025 (2)	0.058 (3)	0.033 (3)	-0.001 (2)	0.013 (2)	-0.005 (2)
C7	0.032 (3)	0.060 (3)	0.028 (2)	-0.014 (2)	0.004 (2)	0.005 (2)
C8	0.042 (3)	0.040 (3)	0.033 (2)	-0.012 (3)	0.009 (2)	0.005 (2)

С9	0.032 (3)	0.029 (2)	0.028 (2)	0.0018 (18)	0.0072 (19)	0.0048 (17)
Geom	eetric parameters (Å,	, °)				
N1-	C1	1.343	(4)	C4—C9		1.384 (6)
N1—	C2	1.368	(5)	C4—C5		1.386 (6)
N1—	C4	1.435	(5)	C5—C6		1.389 (7)
N2—	C2	1.297	(6)	С5—Н5		0.9500
N2—	N3	1.370	(5)	C6—C7		1.369 (7)
N3—	C1	1.306	(5)	С6—Н6		0.9500
N3—	C3	1.471	(6)	C7—C8		1.381 (8)
C1—1	H1	0.950	0	С7—Н7		0.9500
C2—1	H2	0.950	0	C8—C9		1.385 (7)
C3—1	H3A	0.980	0	C8—H8		0.9500
C3—1	H3B	0.980	0	С9—Н9		0.9500
C3—]	H3C	0.980	0			
C1—1	N1—C2	105.4	(3)	C9—C4—C5		121.3 (4)
C1—1	N1—C4	126.4	(3)	C9—C4—N1		119.2 (4)
C2—]	N1—C4	128.2	(3)	C5—C4—N1		119.4 (4)
C2—1	N2—N3	103.8	(4)	C4—C5—C6		119.0 (4)
C1—1	N3—N2	111.4	(3)	С4—С5—Н5		120.5
C1—]	N3—C3	127.9	(4)	С6—С5—Н5		120.5
N2—	N3—C3	120.7	(4)	C7—C6—C5		120.2 (5)
N3—	C1—N1	107.5	(3)	С7—С6—Н6		119.9
N3—	C1—H1	126.3		С5—С6—Н6		119.9
N1—	C1—H1	126.3		C6—C7—C8		120.4 (5)
N2—	C2—N1	112.0	(3)	С6—С7—Н7		119.8
N2—	C2—H2	124.0		С8—С7—Н7		119.8
N1—	С2—Н2	124.0		С7—С8—С9		120.6 (5)
N3—	С3—НЗА	109.5		С7—С8—Н8		119.7
N3—	С3—Н3В	109.5		С9—С8—Н8		119.7
H3A-	—С3—Н3В	109.5		C4—C9—C8		118.5 (5)
N3—	С3—Н3С	109.5		С4—С9—Н9		120.8
H3A-	—С3—Н3С	109.5		С8—С9—Н9		120.8
H3B-	—С3—Н3С	109.5				
C2—]	N2—N3—C1	0.0 (4)	C1—N1—C4—C5		-12.9 (6)
C2—]	N2—N3—C3	179.3	(4)	C2—N1—C4—C5		167.9 (4)
N2—	N3—C1—N1	-0.4 ((4)	C9—C4—C5—C6		-1.0 (7)
C3—]	N3—C1—N1	-179.	6 (4)	N1—C4—C5—C6		177.6 (4)
C2—]	N1—C1—N3	0.6 (4)	C4—C5—C6—C7		0.7 (7)
C4—]	N1—C1—N3	-178.	7 (3)	C5—C6—C7—C8		0.0 (7)
N3—	N2—C2—N1	0.4 (5)	C6—C7—C8—C9		-0.2 (7)
C1—]	N1—C2—N2	-0.6 ((5)	C5—C4—C9—C8		0.7 (6)
C4—]	N1—C2—N2	178.6	(4)	N1—C4—C9—C8		-177.9 (4)
C1—]	N1—C4—C9	165.7	(4)	C7—C8—C9—C4		-0.1 (7)
C2—]	N1—C4—C9	-13.4	(6)			

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C1—H1…I1 ⁱ	0.95	2.85	3.707 (4)	150
C2—H2···I1 ⁱⁱ	0.95	2.94	3.811 (4)	153
C3—H3 <i>B</i> …I1 ⁱⁱⁱ	0.98	3.10	4.079 (6)	176

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*-1/2; (ii) *x*, -*y*, *z*-1/2; (iii) *x*, *y*, *z*-1.

(salt5) 1-Benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate

Crystal data	
$C_{15}H_{14}N_3^+ \cdot Br^- \cdot H_2O$	F(000) = 1360
$M_r = 334.22$	$D_{\rm x} = 1.545 {\rm Mg} {\rm m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
a = 24.783 (6) Å	Cell parameters from 10996 reflections
b = 8.996 (2) Å	$\theta = 3.2 - 27.7^{\circ}$
c = 13.089 (3) Å	$\mu = 2.86 \text{ mm}^{-1}$
$\beta = 100.068 \ (7)^{\circ}$	T = 173 K
$V = 2873.3 (13) \text{ Å}^3$	Prism, colorless
Z = 8	$0.60 \times 0.37 \times 0.17 \text{ mm}$
Data collection	
Rigaku XtaLAB mini	3259 independent reflections
diffractometer	2630 reflections with $I > 2\sigma(I)$
Detector resolution: 6.849 pixels mm ⁻¹	$R_{\rm int} = 0.031$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.2^{\circ}$

 ω scans Absorption correction: multi-scan (*REQAB*; Rigaku, 1998) $T_{\min} = 0.321, T_{\max} = 0.614$ 6672 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.098$ S = 1.08	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0376P)^2 + 4.9222P]$ where $P = (F_o^2 + 2F_c^2)/3$
R[T > 20(T)] = 0.045 $mD(T^2) = 0.008$	$and constrained refinement and = 1/[-2(E^2)] + (0.0276D)^2 + 4.0222D]$
$WR(r^2) = 0.098$	$W = \frac{1}{[0^{2}(F_{0}^{2}) + (0.0570F)^{2} + 4.9222F]}{1 - 10^{2}}$
S = 1.08	where $P = (F_0^2 + 2F_c^2)/3$
3259 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
189 parameters	$\Delta \rho_{\rm max} = 0.75 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $h = -16 \rightarrow 32$

 $k = -11 \rightarrow 9$

 $l = -16 \rightarrow 17$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.91115 (2)	0.40151 (3)	0.12909 (3)	0.03409 (12)	
01	0.95493 (13)	0.3722 (3)	0.3846 (2)	0.0497 (7)	
N1	0.93559 (9)	-0.0969 (2)	0.07656 (16)	0.0202 (5)	

N2	0.85547 (9)	-0.0072 (2)	0.02922 (17)	0.0230 (5)
N3	0.84900 (10)	-0.1587 (3)	0.0213 (2)	0.0310 (6)
C1	0.90660 (11)	0.0297 (3)	0.0619 (2)	0.0218 (6)
H1	0.9206	0.1278	0.0731	0.026*
C2	0.89834 (12)	-0.2097 (3)	0.0504 (2)	0.0282 (6)
H2	0.9075	-0.3123	0.0533	0.034*
C3	0.80795 (12)	0.0930 (3)	0.0032 (2)	0.0272 (6)
H3A	0.7870	0.0662	-0.0657	0.033*
H3B	0.8210	0.1966	-0.0005	0.033*
C4	0.77094 (11)	0.0834 (3)	0.0831 (2)	0.0228 (6)
C5	0.78422 (12)	0.1609 (3)	0.1760 (2)	0.0279 (6)
Н5	0.8160	0.2219	0.1883	0.034*
C6	0.75109 (13)	0.1493 (3)	0.2505 (2)	0.0339 (7)
H6	0.7605	0.2008	0.3145	0.041*
C7	0.70429 (12)	0.0627 (3)	0.2321 (2)	0.0310 (7)
H7	0.6817	0.0544	0.2834	0.037*
C8	0.69055 (13)	-0.0116 (4)	0.1389 (3)	0.0357 (7)
H8	0.6581	-0.0697	0.1257	0.043*
С9	0.72382 (12)	-0.0019 (3)	0.0647 (2)	0.0306 (7)
Н9	0.7143	-0.0539	0.0009	0.037*
C10	0.99369 (11)	-0.1085 (3)	0.11401 (19)	0.0219 (6)
C11	1.02340 (12)	0.0196 (3)	0.1428 (2)	0.0248 (6)
H11	1.0060	0.1140	0.1367	0.030*
C12	1.07896 (12)	0.0078 (3)	0.1805 (2)	0.0289 (6)
H12	1.0999	0.0947	0.2007	0.035*
C13	1.10438 (13)	-0.1303 (4)	0.1889 (2)	0.0321 (7)
H13	1.1425	-0.1380	0.2151	0.038*
C14	1.07384 (13)	-0.2566 (4)	0.1590 (2)	0.0360 (7)
H14	1.0912	-0.3511	0.1645	0.043*
C15	1.01828 (12)	-0.2467 (3)	0.1210 (2)	0.0310 (7)
H15	0.9974	-0.3334	0.1001	0.037*
H1A	0.992 (2)	0.389 (5)	0.377 (4)	0.086 (17)*
H1B	0.939 (3)	0.372 (7)	0.315 (5)	0.13 (3)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0347 (2)	0.02343 (17)	0.0440 (2)	-0.00110 (13)	0.00651 (13)	-0.00295 (13)
01	0.0535 (18)	0.0457 (15)	0.0542 (18)	0.0036 (13)	0.0215 (14)	0.0063 (13)
N1	0.0236 (12)	0.0192 (11)	0.0183 (10)	0.0007 (9)	0.0051 (9)	-0.0014 (9)
N2	0.0225 (13)	0.0221 (12)	0.0251 (12)	0.0027 (9)	0.0060 (10)	-0.0001 (9)
N3	0.0275 (14)	0.0210 (12)	0.0435 (15)	0.0013 (10)	0.0034 (11)	-0.0025 (11)
C1	0.0252 (15)	0.0185 (13)	0.0225 (13)	0.0019 (11)	0.0059 (11)	-0.0009 (10)
C2	0.0275 (16)	0.0201 (14)	0.0366 (16)	-0.0003 (12)	0.0044 (12)	-0.0026 (12)
C3	0.0237 (15)	0.0290 (15)	0.0287 (14)	0.0070 (12)	0.0039 (11)	0.0062 (12)
C4	0.0188 (14)	0.0224 (14)	0.0265 (14)	0.0070 (11)	0.0021 (11)	0.0042 (11)
C5	0.0215 (15)	0.0298 (15)	0.0316 (15)	-0.0024 (12)	0.0018 (12)	-0.0013 (12)
C6	0.0359 (18)	0.0369 (17)	0.0286 (15)	0.0007 (14)	0.0047 (13)	-0.0028 (13)

C7	0.0266 (16)	0.0319 (16)	0.0361 (17)	0.0041 (12)	0.0101 (13)	0.0057 (13)
C8	0.0233 (16)	0.0350 (18)	0.049 (2)	-0.0060 (13)	0.0068 (14)	0.0003 (15)
C9	0.0256 (16)	0.0309 (16)	0.0340 (16)	-0.0005 (12)	0.0014 (13)	-0.0059 (13)
C10	0.0235 (14)	0.0284 (14)	0.0144 (12)	0.0017 (11)	0.0050 (10)	0.0008 (10)
C11	0.0280 (16)	0.0260 (15)	0.0201 (13)	-0.0021 (12)	0.0036 (11)	0.0024 (11)
C12	0.0280 (16)	0.0380 (17)	0.0204 (13)	-0.0063 (13)	0.0039 (11)	0.0009 (12)
C13	0.0255 (16)	0.0476 (19)	0.0226 (14)	0.0063 (13)	0.0027 (12)	0.0032 (13)
C14	0.0331 (18)	0.0334 (17)	0.0403 (18)	0.0106 (14)	0.0027 (14)	0.0006 (14)
C15	0.0290 (17)	0.0265 (15)	0.0358 (16)	0.0054 (12)	0.0009 (13)	-0.0023 (13)

Geometric parameters (Å, °)

O1—H1A	0.95 (6)	С6—С7	1.382 (4)
O1—H1B	0.92 (7)	C6—H6	0.9500
N1—C1	1.342 (3)	C7—C8	1.381 (4)
N1—C2	1.375 (4)	C7—H7	0.9500
N1-C10	1.441 (4)	C8—C9	1.382 (4)
N2-C1	1.307 (3)	C8—H8	0.9500
N2—N3	1.374 (3)	С9—Н9	0.9500
N2—C3	1.475 (3)	C10—C15	1.380 (4)
N3—C2	1.299 (4)	C10—C11	1.384 (4)
C1—H1	0.9500	C11—C12	1.383 (4)
С2—Н2	0.9500	C11—H11	0.9500
C3—C4	1.508 (4)	C12—C13	1.388 (4)
С3—НЗА	0.9900	C12—H12	0.9500
С3—Н3В	0.9900	C13—C14	1.383 (5)
C4—C9	1.383 (4)	C13—H13	0.9500
C4—C5	1.391 (4)	C14—C15	1.383 (4)
C5—C6	1.384 (4)	C14—H14	0.9500
С5—Н5	0.9500	C15—H15	0.9500
H1A—O1—H1B	98 (5)	С5—С6—Н6	119.9
C1—N1—C2	105.8 (2)	C8—C7—C6	119.8 (3)
C1-N1-C10	126.0 (2)	С8—С7—Н7	120.1
C2-N1-C10	128.2 (2)	С6—С7—Н7	120.1
C1—N2—N3	111.7 (2)	C7—C8—C9	120.3 (3)
C1—N2—C3	127.5 (2)	С7—С8—Н8	119.8
N3—N2—C3	120.7 (2)	С9—С8—Н8	119.8
C2—N3—N2	103.7 (2)	C8—C9—C4	120.1 (3)
N2-C1-N1	107.2 (2)	С8—С9—Н9	119.9
N2—C1—H1	126.4	С4—С9—Н9	119.9
N1-C1-H1	126.4	C15-C10-C11	121.6 (3)
N3—C2—N1	111.7 (3)	C15—C10—N1	119.4 (2)
N3—C2—H2	124.2	C11—C10—N1	119.0 (2)
N1—C2—H2	124.2	C12-C11-C10	118.8 (3)
N2-C3-C4	111.3 (2)	C12—C11—H11	120.6
N2—C3—H3A	109.4	C10—C11—H11	120.6
C4—C3—H3A	109.4	C11—C12—C13	120.4 (3)

N2—C3—H3B	109.4	C11—C12—H12	119.8
C4—C3—H3B	109.4	C13—C12—H12	119.8
H3A—C3—H3B	108.0	C14—C13—C12	119.6 (3)
C9—C4—C5	119.6 (3)	C14—C13—H13	120.2
C9—C4—C3	120.6 (3)	С12—С13—Н13	120.2
C5—C4—C3	119.8 (3)	C15—C14—C13	120.7 (3)
C6—C5—C4	120.0 (3)	C15—C14—H14	119.7
С6—С5—Н5	120.0	C13—C14—H14	119.7
С4—С5—Н5	120.0	C10-C15-C14	118.8 (3)
C7—C6—C5	120.2 (3)	C10—C15—H15	120.6
С7—С6—Н6	119.9	C14—C15—H15	120.6
C1—N2—N3—C2	-0.1 (3)	C6—C7—C8—C9	1.1 (5)
C3—N2—N3—C2	-179.6 (2)	C7—C8—C9—C4	-0.5 (5)
N3—N2—C1—N1	0.0 (3)	C5—C4—C9—C8	-0.9 (4)
C3—N2—C1—N1	179.4 (2)	C3—C4—C9—C8	179.1 (3)
C2—N1—C1—N2	0.1 (3)	C1—N1—C10—C15	-177.3 (3)
C10—N1—C1—N2	-178.9 (2)	C2-N1-C10-C15	4.0 (4)
N2—N3—C2—N1	0.2 (3)	C1-N1-C10-C11	3.1 (4)
C1—N1—C2—N3	-0.1 (3)	C2-N1-C10-C11	-175.6 (3)
C10—N1—C2—N3	178.8 (2)	C15—C10—C11—C12	-0.7 (4)
C1—N2—C3—C4	-108.9 (3)	N1-C10-C11-C12	178.8 (2)
N3—N2—C3—C4	70.5 (3)	C10-C11-C12-C13	0.2 (4)
N2—C3—C4—C9	-99.5 (3)	C11—C12—C13—C14	0.3 (4)
N2—C3—C4—C5	80.5 (3)	C12-C13-C14-C15	-0.2 (5)
C9—C4—C5—C6	1.7 (4)	C11-C10-C15-C14	0.8 (4)
C3—C4—C5—C6	-178.3 (3)	N1-C10-C15-C14	-178.8 (2)
C4—C5—C6—C7	-1.1 (5)	C13—C14—C15—C10	-0.3 (5)
C5—C6—C7—C8	-0.3 (5)		

Hydrogen-bond geometry (Å, °)

DH…4
151
156
130
172 (4)
170 (5)

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*+2, *y*, –*z*+1/2.