Skip to main content
Hydrogeological control on spatial patterns of groundwater seepage in peatlands
Masters Theses
  • Danielle K Hare, University of Massachusetts Amherst
Document Type
Open Access Thesis
Degree Program
Degree Type
Master of Science (M.S.)
Year Degree Awarded
Month Degree Awarded

Groundwater seepage to surface water is an important process to peatland ecosystems; however, the processes controlling seepage zone distribution and magnitude are not well understood. This lack of process-based understanding makes degraded peatland ecosystems difficult to restore and problematic for resource managers developing a sustainable design. Degraded peatlands, particularly abandoned cranberry farms, often have drainage ditches, applied surface sand, and decreased stream sinuosity to artificially lower the water table and support agriculture. These modifications disconnect the surface and groundwater continuum, which decreases thermal buffering of surface water significantly. The combination of a decreased influx of thermally buffered groundwater, a naturally low surface gradient, minimal canopy, and strong solar input causes surface water temperature extremes that degrade ecosystem health. Through strategically incorporating the natural processes to restore groundwater discharge to restored surface streams, surface water temperature extremes will be buffered promoting a healthy, resilient wetland ecosystem. Therefore, it is critical to understand the spatial hydrogeologic constraints that induce groundwater seepage. Here we examine the spatial relationship between surficial groundwater seepage and the subsurface hydrogeologic structure within a mineraltrophic peatland environment. We use multiple field methods to develop a process-based conceptual model of the ground water seepage development at the site; these methods include geophysical, thermal, and isotopic techniques. The results indicate that there are two distinct forms of groundwater discharge to the peatland platform: diffuse lower-flux marginal seepage and discrete higher-flux interior seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, specifically when the basin slope is perpendicular to the regional groundwater gradient. These observations also allow insight into the formation of the groundwater discharge through time. The strong correlation between the subsurface basin structure and surficial groundwater expression will allow resource managers to more efficiently locate groundwater seepage on large, complex sites, and develop comprehensive management and restoration strategies for these critical ecosystems.

First Advisor
David F Boutt
Citation Information
Danielle K Hare. "Hydrogeological control on spatial patterns of groundwater seepage in peatlands" (2015)
Available at: