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Direct Oxygen Abundances for Low Luminosity LVL Galaxies!

Danielle A. Berg!, Evan D. Skillman!, Andrew R. Marble??, Liese van Zee*, Charles W.
Engelbracht?, Janice C. Lee®, Robert C. Kennicutt, Jr.%7, Daniela Calzetti®, Daniel A. Dale”, and

Benjamin D. Johnson!”

ABSTRACT

We present MMT spectroscopic observations of H II regions in 42 low luminosity
galaxies in the Spitzer Local Volume Legacy (LVL) survey. For 31 of the 42 galaxies
in our sample, we were able to measure the temperature sensitive [O III] A\4363 line at
a strength of 40 or greater, and thus determine oxygen abundances using the “direct”
method. Our results provide the first “direct” estimates of oxygen abundance for 19 of
these galaxies. “Direct” oxygen abundances were compared to B-band luminosities, 4.5
pm luminosities, and stellar masses in order to characterize the luminosity-metallicity
and mass-metallicity relationships at low-luminosity.

We present and analyze a “Combined Select” sample composed of 38 objects (drawn
from a sub-set of our parent sample and the literature) with “direct” oxygen abun-
dances and reliable distance determinations (based on the tip of the red giant branch
or Cepheid variables). Consistent with previous studies, the B-band and 4.5 pm
luminosity-metallicity relationships for the 38 objects were found to be 12 + log(O/H) =
(6.27+0.21)+(—0.11£0.01) Mp and 12 + log(O/H) = (6.10+0.21)+(—0.10£0.01) M|, 5,
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with dispersions of o = 0.15 and 0.14 respectively. The slopes of the optical and near-
IR L-Z relationships have been reported to be different for galaxies with luminosities
greater than that of the LMC. However, the similarity of the slopes of the optical and
near-IR L-Z relationships for our sample probably reflects little influence by dust ex-
tinction in the low luminosity galaxies. For this sample, we derive a mass-metallicity
relationship of 12 + log(O/H) = (5.61£0.24) 4 (0.29 £ 0.03) log(M, ), which agrees with
previous studies; however, the dispersion (o = 0.15) is not significantly lower than that
of the L-Z relationships. Because of the low dispersions in these relationships, if an
accurate distance is available, the luminosity of a low luminosity galaxy is often a bet-
ter indicator of metallicity than that derived using certain “strong-line” methods, so
significant departures from the L-Z relationships may indicate that caution is prudent
in such cases. With these new “direct” metallicities we also revisit the 70/160 pm color
metallicity relationship.

Additionally, we examine N/O abundance trends with respect to oxygen abundance
and B-V color. We find a positive correlation between N/O ratio and B-V color for 0.05
S B—-V <0.75: log(N/O) = (1.18+0.9) x(B-V) + (—1.924+0.08), with a dispersion of
o = 0.14, that is in agreement with previous studies.

Subject headings: galaxies: abundances - galaxies: dwarf - galaxies: evolution

1. INTRODUCTION

There is a fundamental relationship between the mass of stars in a galaxy and its metallicity
evolution (e.g., Tremonti et al. 2004, hereafter, the M-Z relation). Empirically, this has been
observed as a luminosity-metallicity relationship (hereafter, the L-Z relation) for low redshift dwarf
galaxies (e.g., Lequeux et al. 1979; Skillman et al. 1989; Lee et al. 2006a, and references therein)
and spiral galaxies (e.g., McCall et al. 1985; Garnett & Shields 1987; Zaritsky et al. 1994; Tremonti
et al. 2004, and references therein). This relationship is observed over a range of 10 magnitudes in
galaxy optical luminosity (e.g., Zaritsky et al. 1994; Tremonti et al. 2004; Lee et al. 2006a), but the
data are relatively sparse at the low luminosity end where the intrinsic faintness of these galaxies
makes metallicity determinations more difficult.

The physical driver of the M-Z relation remains under debate. One possibility is that low-mass
galaxies are younger, in that they only recently started forming stars (Noeske et al. 2000; Leitner
& Kravtsov 2011). Another is that they have been less efficient at producing metals (Brooks et
al. 2007). Many studies favor a different interpretation, where supernova driven winds prefer-
entially expel metals from low-mass galaxies, resulting in a lower effective yield with decreasing
mass (e.g., Dekel & Silk 1986). However, Dalcanton (2007) emphasizes the importance of star
formation efficiency as outflows are an insufficient regulator in the absence of depressed star for-
mation. In addition, Dalcanton’s calculations show that low effective yields cannot be due to gas
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infall. Alternatively, Koppen et al. (2007) showed that the M-Z relationship may be observed nat-
urally if a SFR-dependent, and therefore mass-dependent, stellar initial mass function (IMF) is
assumed. Clearly a better understanding of the mass-metallicity relationship at low-luminosity re-
mains important to determine how galaxies evolve (e.g., see discussion in Moustakas et al. 2012, and
references therein). In addition, a well defined low-luminosity M-Z relationship will provide clues
to the source of its measurable scatter. While observational errors play a role, one or more physical
processes may be responsible for the remainder. Suggestions for the scatter include variations in
the star formation history (e.g., recent starbursts, Contini et al. 2002), variations in stellar surface
mass density (Ellison et al. 2008), inflow of metal poor gas, perhaps triggered by interactions (Lee
et al. 2004), and variations in local galaxy density (e.g., Cooper et al. 2008, and references therein).
As astronomers examine the interrelationship between chemical abundance measurements, star for-
mation, gas accretion, and gas outflow by measuring the evolution of the M-Z relationship, a secure
M-Z relationship for the current epoch is needed for comparison.

FEmpirical and theoretical oxygen abundance calibrations often introduce bias, further limiting
the M-Z relationship (e.g., Yin et al. 2007; Pérez-Montero & Contini 2009; Moustakas et al. 2010;
Berg et al. 2011). Notably, for 53,000 SDSS galaxies, which span 10 orders in B-band magnitude,
Tremonti et al. (2004) found a dispersion of 0.16 for their L-Z relationship and 0.10 for their M-Z
relationship. Lee et al. (2006a, hereafter LO6) were able to extend the mass-metallicity relation
lower by 2.5 decades in stellar mass using 4.5 um luminosities for 27 nearby dwarf irregular galaxies.
Interestingly, L06 found the dispersion in the near-infrared L-Z relationship to be smaller than
the corresponding dispersion in the B-band L-Z relationship and nearly identical to that of the
M-Z relationship. The smaller dispersion in the near-infrared is not totally unexpected, as NIR
luminosities are less sensitive to extinction from dust and variations in star formation rate. However,
the significant but uncertain stochastic effects of asymptotic giant branch (AGB) stars on the total
NIR luminosities of low luminosity galaxies must also be considered (see, e.g., Fouesneau & Langon
2010; Meidt et al. 2012; Melbourne et al. 2012).

To thoroughly examine the L-Z and M-Z relations, we need a robust sample of galaxies. The
Spitzer Local Volume Legacy survey! (LVL; Dale et al. 2009) covers a volume-complete sample of
258 galaxies in the local universe with multiwavelength observations spanning the ultraviolet to
the radio. The LVL is leveraged by ancillary data including Ha (Kennicutt et al. 2008) and UV
(Lee et al. 2011) imaging from the 11 Mpc Ha and Ultraviolet Galaxy Survey (11HUGS; Lee et
al. 2011) and the Nearby Galaxy Survey (NGS; Gil de Paz et al. 2007). A subsample of the LVL
also contains stellar population mapping from the ACS Nearby Galaxy Survey Treasury (ANGST;
Dalcanton et al. 2009), HI mapping from the VLA and GMRT, and optical broad-band imaging
(Cook et al. 2012; van Zee et al. 2012) and spectroscopy. However, many of the faintest objects
are missing the high-quality optical spectroscopy needed to determine “direct” oxygen-abundance
metallicity estimates.

"http://www.ast.cam.ac.uk/research /Ivls
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As the L-Z relationship provides both a very strong constraint on theories of galaxy evolution
and a tool to better understand galaxies at higher redshifts (Kobulnicky et al. 2003), we are mo-
tivated to better characterize the low-luminosity end of the L-Z relationship. Thus, we obtained
high-resolution MMT spectroscopy of 42 low luminosity star-forming galaxies in the Local Vol-
ume with the goal of detecting the [O III] A4363 line in order to constrain electron temperature
measurements.

We present our low-luminosity sample in § 2.2, with spectral observations obtained from the
MMT in § 3.1 and IRAC photometry in § 3.2. Section 4 describes the data reduction, followed by
the description of the method used to determine “direct” oxygen abundances in § 5. Our “Select”
sample, compiled from objects with “direct” oxygen abundances and secure distance estimates,
is defined in § 6.1. Using this sample, metallicity is compared to expected trends with B-band
luminosity, 4.5 pm luminosity, and stellar mass in § 6.2, § 6.3, and § 6.4 respectively. N/O relative
abundances are discussed in § 7. In § 8 we discuss the results of the relationships found in § 6.2-§ 6.4,
the “young galaxy” hypothesis, and the quality of abundance estimators. Finally, we summarize
our conclusions in § 9. Appendix A presents the strong-line abundances for the low-luminosity LVL
galaxies for which we were unable to determine “direct” abundances. and Appendix B presents
our new “direct” abundances in comparison to the color-temperature metallicity relationship of
Engelbracht et al. (2008).

2. Sample Selection
2.1. Spitzer LVL Survey

LVL is a Spitzer Space Telescope legacy program that combines IRAC (Infrared Array Camera)
and MIPS (Multiband Imaging Photometer) infrared imaging for a complete sample of 258 galaxies
for the nearest 11 Mpc of our local universe. These data build upon recent Local Volume galaxy
surveys: narrowband Ha (Kennicutt et al. 2008), GALEX ultraviolet (Lee et al. 2011), and Hubble
Space Telescope resolved stellar population imaging (Dalcanton et al. 2009). While previous surveys
comprehensively cover high surface brightness systems in flux-limited samples, the LVL survey,
although also biased toward high surface brightness galaxies, provides a multi-wavelength inventory
of a statistically robust, approximately volume-limited sample, which is well-suited for studies of
dwarf galaxies. By studying the nearby, low-luminosity galaxies, we can increase the dynamic range
covered by the luminosity-metallicity and mass-metallicity relationships, which will help to better
constrain the slopes.
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2.2. Low-Luminosity LVL Sample

We selected a sample of 42 low luminosity galaxies in the LVL survey in order to obtain new
MMT high-resolution spectra. These low luminosity spirals and dwarf irregulars span a range in
distance of 2.5 < D < 14.0 Mpc?. The luminosities for this sample range in the near-IR (determined
from IRAC (Fazio et al. 2004) photometry) from My 5 = —13.1 to —21.7, with B-band magnitudes
of —10.8 > Mp > —18.8. Most of the objects were chosen because they lack “direct” oxygen
abundances in the literature, their abundance estimates are dated, or were studied with instruments
which were known to have problems.

Although not LVL objects, two additional galaxies were added to the sample (increasing the
sample total to 44 objects) because they played a role in motivating this project. Both UGC 4393
and UGC 10818 were identified by Engelbracht et al. (2008) as low metallicity outliers from the
global trend of 70/160 um color temperature as a function of metallicity. These two galaxies affect
the interpretation of the trend for aromatic emission to weaken below 12 + log(O/H) = 7.9 in the
mid-IR (see e.g., Engelbracht et al. 2008) and the far-IR (see e.g., Draine et al. 2007; Engelbracht
et al. 2008). Because of the possibility that these objects’ oxygen abundances were underestimated
using the lower branch of the Ro3 calibration (Pilyugin & Thuan 2005), they were included in this
sample to be re-examined (see discussion in Appendix B). See Table 1 for sample characteristics.

3. DATA
3.1. MMT Spectra
3.1.1. Observations

New spectroscopy was acquired at the MMT in order to achieve high signal-to-noise (S/N)
spectra with the goal of detecting the faint [O III] AM4363 auroral line at a strength of 40 or higher.
The observations were obtained with the Blue Channel spectrograph (Schmidt et al. 1989) on
the UT dates of 2008 October 30-November 1, 2009 June 15-22, and 2010 January 11-12. Sky
conditions varied, but contained minimal cloud coverage and approximately arcsecond seeing. A
500 line grating, 1” slit, and UV-36 blocking filter were used, yielding an approximate dispersion
of 1.2 A per pixel, a full width at half maximum resolution of < 3 A, and a wavelength coverage of
3690-6790 A. The sensitivity, resolution, and wavelength coverage of the MMT and Blue Channel
spectrograph combination allowed for the measurement of all emission lines relevant to oxygen
abundance determinations. Bias frames, flat-field lamp images, and sky flats were taken each night.
The latter were primarily necessary due to significant differences between the chip illumination
patterns of the sky and the MMT Top Box that houses the “BC” incandescent flat-field lamp. On

2Since the inception of the LVL Spitzer program, four galaxies included in the sample have updated distances
which place them outside of 11 Mpc (see Dale et al. 2009; Lee et al. 2011).
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average, four standard stars from Oke (1990) with spectral energy distributions (SEDs) peaking in
the blue and containing minimal absorption were observed throughout the night using a 5” slit over
a range of airmasses. This allows the flux calibration to be determined as a function of airmass.
The large slit width mitigates the effects of atmospheric differential refraction and allows accurate
measurements of relative fluxes across a large range in wavelength. Note that since we only care

about relative abundances, an absolute flux calibration is not critical.

All 44 galaxies had at least one strong Ha brightness peak that was aligned with the 1”7 x 180"

3 were made with the slit at a fixed position angle which

slit. Typically, three 900 second exposures
approximated the parallactic angle at the midpoint of the observation and laid across several Ha
bright regions when possible. This, in addition to observing the galaxies at airmasses less than 1.5,
served to minimize the wavelength-dependent light loss due to differential refraction (Filippenko
1982). A single slit position for each target was deemed sufficient to characterize the global oxygen
abundance, as metallicity gradients are observed to be small or non-existent in low-mass galaxies
(e.g., Skillman et al. 1989; Kobulnicky & Skillman 1996, 1997; Lee et al. 2006b; Croxall et al.
2009). Finally, combined helium, argon, and neon arc lamps were observed at each pointing for
accurate wavelength calibration. A log of the observations is provided in Table 2. Figure 1 shows
the R-band continuum and Ha continuum-subtracted images for each galaxy, motivating our slit
location choices. The brightest Ha regions observed are ordered alphabetically by decreasing flux,
and the slit positions on the galaxies are shown. The images scale as 60x60 arcseconds with North

oriented up and East to the left.

3.1.2.  Spectra Reduction

The MMT observations were processed using ISPEC2D (Moustakas & Kennicutt 2006), a
long-slit spectroscopy data reduction package written in IDL. A master bias frame was created
from 2 20 zero second exposures by discarding the highest and lowest value at each pixel and
taking the median. Master sky and dome flats were similarly constructed after normalizing the
counts in the individual images. Those calibration files were then used to bias-subtract, flat-field,
and illumination-correct the raw data frames. Dark current was measured to be an insignificant
~ 1 e~ per pixel per hour and was not corrected for.

Misalignment between the trace of the light in the dispersion direction and the orientation
of the CCD detector was rectified via the mean trace of the standard stars for each night, pro-
viding alignment to within a pixel across the detector. A two-dimensional sky subtraction was
performed using individually selected sky apertures, followed by a wavelength calibration applied
from the HeArNe comparison lamps taken at the same telescope pointing. Airmass dependent

3Some galaxy observations were adjusted to shorter or longer exposures depending on the brightness of the [O II1]
4363 line strength, or included additional exposures when the observing program allowed for it; see Table 2.
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atmospheric extinction and reddening were corrected for using the standard Kitt Peak extinction
curve (Crawford & Barnes 1970).

For each galaxy, the multiple sub-exposures were combined, eliminating cosmic rays in the
process. The resulting images were then flux-calibrated using the sensitivity curve derived from the
standard star observations taken throughout a given night. Finally, the trace fit to the strongest
continuum source in the slit was used to extract the galaxy emission within apertures that encom-
passed 2 99% of the light. Figure 2 shows a sample of four of the resulting one-dimensional spectra
extracted for galaxies that had significant [O III] A4363 detections. The inset windows display a
narrower spectral range to emphasize the [O III] A\4363 strength. This sample does not feature the
best spectra from our sample, but rather galaxies are ordered by ionizing radiation field strength
from highest to lowest as given by the [O III] A5007/[O II] A3727 ratio, highlighting the variation
within the sample.

3.2. Photometry

To better characterize our low-luminosity sample, absolute magnitudes in several different
bands were obtained. Here we describe their origin and reference their subsequent use. Mp values
were determined by van Zee et al. (2012) using photometry from apertures matched to the infrared
LVL photometry (unless otherwise noted). Optical photometry for the entire LVL sample is given in
Cook et al. (2012), whereas van Zee et al. (2012) focuses on the analysis of colors and EW gradients
of dwarf galaxies. The data are used to examine the optical luminosity-metallicity relationship (see
Section 6.2).

My 5) values from the 4.5 ym IRAC photometry presented in Dale et al. (2009) were calculated
using
Fiy.5(d/10)? 1)
179.7 7
where Fly5 is the 4.5 pm flux in Janskys, d is the distance in parsecs, and 179.7 is the zero
point flux in Janksys for the 4.5 pm IRAC band (Reach et al. 2005). Distances are taken from
the literature, as described in Table 1, and assumed to have 10% uncertainty where none were

M[4.5] = —-2.5 log

provided. TRAC calibration uncertainties are 5 — 10% for the 4.5 ym data. Later, in Section 6.4,
we use these My 5 magnitudes to analyze the NIR luminosity-metallicity relationship. Similarly,
M, values were determined by Dale et al. (2009) from 2MASS imaging, where 666.7 is the zero
point flux in Janksys for the 2MASS Kg band. Although 2MASS Fi values are available for those
objects which Dale et al. (2009) don’t provide Kg magnitudes, we choose not to use them. The
small apertures used in the 2MASS extraction produce unexpectedly faint magnitudes for smaller
galaxies when compared to similar extractions from IRAC 3.6 and 4.5 um data (see, e.g., Figures 4
and 5 in Dale et al. 2009), and so may not be terribly accurate for our sample. The K¢ magnitudes
were used to determine stellar masses in Section 6.4.



-8 —

Finally, V-band magnitudes were needed to calculate B — V colors (see Table 1). When
available, My values were provided by van Zee et al. (2012), using the LVL elliptical aperture.
In other cases, values are taken from de Vaucouleurs et al. (1991) or are determined using g- and
r-band photometry available from the Sloan Digital Sky Survey (SDSS; York et al. 2000). The
SDSS values are then used to estimate the B — V' color following Jester et al. (2005):

The available Mp, M4 5), and B—V colors and references for this sample are listed in Table 1. Note

B-V =

that the main source of uncertainty in these magnitudes lies in the distance determinations. Eight
of the objects in our sample have distance errors of approximately 10%. Furthermore, 20 of the 44
objects in our sample do not have uncertainties associated with their distance determinations. For
these objects we used an uncertainty of 10%, which may be an underestimate for some of them.
The distance uncertainties tend to dominate over the photometric uncertainties.

4. NEBULAR ABUNDANCE ANALYSIS
4.1. Emission Line Measurements

Emission line strengths were measured using standard methods available within IRAF?. In
particular, the SPLOT routine was used to analyze the extracted one-dimensional spectra and to
fit Gaussian profiles to emission lines to determine their integrated fluxes. Special attention was
paid to the Balmer lines, which are sometimes located in troughs of significant underlying stellar
absorption. The Hor emission lines typically had equivalent widths of ~ 350 A, large enough that
the underlying absorption was not a concern. Even for those Ha emission lines with lower EWs, the
underlying absorption was negligible. This was often not the case for HS and the lower equivalent
width Balmer lines. The HA absorption EWs for our sample range from 1-8 A. These values are
typical of local low-luminosity galaxies, with the majority having HB absorption EWs between 0 A
and 5 A (see, e.g., Figure 6 in Berg et al. 2011). For the bluer Balmer lines, a multiple component
fit was used in which the absorption was fit by a broad, negative Lorentzian profile and the emission
was fit by a narrow, positive Gaussian profile. To ensure a proper fit of the [O III] A4363 line, Hy
was first fit by a Gaussian profile, then [O III] A4363 was forced to be fit to the same line profile
with the assumption that the profile widths of these two neighboring lines should be the same.

Note that we chose to fit the underlying Balmer absorption with Lorentzian profiles, as opposed
to using stellar population synthesis continuum fitting common in many studies (e.g., Tremonti et al.
2004). Given the large equivalent widths of the Balmer emission lines, the differences between the
two methods are negligible, and the Lorentzian profiles have the advantage of require no additional

4IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of
Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
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assumptions. Most importantly, for spectra dominated by young stars, at S/N values typical of
our spectra, population synthesis models may not provide a unique solution. There are also very
large variations in the population synthesis models for young ages, with large uncertainties in how
the Wolfe-Rayet phase, stellar winds, rotation, and other parameters are treated. Since mass loss
and mixing processes in stellar evolution are still poorly understood, stellar phases, like Wolf-Rayet
stars or Red Super Giants, are particularly affected by such uncertainties (Leitherer & Ekstrom
2011). Later phases, like AGB stars, are covered only crudely in models or not at all, pushing
parameters into regimes that are not properly calibrated. When discrepancies between models are
found, they can usually be attributed to different intrinsic input parameters and/or treatment of
these aberrant stellar evolutionary phases (Vazquez & Leitherer 2005; Conroy & Gunn 2010). By
not using the models to fit our continuum, we avoid the uncertainties associated with these implicit
assumptions.

The errors of the flux measurements were approximated using

o)\ R \/(2 x VN x 7"ms)2 +(0.02 x Fy)?, (3)

where N is the number of pixels spanning the Gaussian profile fit to the narrow emission lines. The
rms noise in the continuum was taken to be the average of the rms on each side of an emission line.
For weak lines, whose uncertainty is dominated by error from the continuum subtraction, the rms
term determines the approximate uncertainty. For the lines with flux measurements much stronger
than the rms noise of the continuum, (usually the Ha lines and often the [O III] AA4959,5007
doublet) the error is dominated by flux calibration and de-reddening uncertainties. In this case, a
minimum uncertainty of 2% was assumed, and the right hand term above dominates the uncertainty
estimate. 31 of the 44 galaxies in our sample were measured to have [O III] A\4363 line strengths
> 40. The measured [O III] A4959/A5007 ratios match theoretical expectations within the errors,
supporting our error estimates and the assumption that the continuum subtraction dominates the
uncertainties for the weak lines. For all the objects in the present sample, flux line strengths and
corresponding errors are listed in Table 3. We concentrate the rest of our analysis on the objects
for which direct electron temperature and chemical abundance determinations can be made. An
analysis of the remaining spectra using strong-line methods is reported in Appendix A.

4.2. Reddening Corrections

The relative intensities of the Balmer lines are nearly independent of both density and tem-
perature, so they can be used to solve for the reddening. The MMT spectra were de-reddened
using the reddening law of Cardelli et al. (1989), parameterized by Ay = 3.1 E(B — V), where
the extinction, A;()\) was calculated using the York Extinction Solver (McCall 2004)3. With these

http://wwwl.cadc-ccda.hia-iha.nrc-cnre.ge.ca/community / YorkExtinctionSolver/
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values, the reddening, F(B — V'), can be derived using

log ﬁggi = log ?EZZ; +0.4 E(B—V) [A1(Ha) — A1 (HPB)], @

where F'(Ha)/F(Hp) is the observed flux ratio and I(Ha)/I(Hp) is the de-reddened line intensity
ratio using case B from Hummer & Storey (1987), assuming an electron temperature calculated
from the [O III] line ratio and ne = 102 em™3. For our sample, the electron temperature range
is 9,500 K - 19,500 K, with an average of 13,300 K. This range agrees with the typical electron
temperatures of 10,000 K - 20,000 K for metal-poor H II regions. This same process can be carried
out for the Hy/HS and HJ/Hp ratios observed. When all the necessary Balmer lines were present,
which is true of all of the objects in our “Select” sample, we used a minimized chi squared approach
to find the best estimate of E(B-V) based on the Ha/HS, Hy/Hp, and H§/Hp ratios. The resulting
Balmer ratios are within errors of the Hummer & Storey (1987) Case B values for all objects meeting
the selection criteria of our “Select” sample (see § 6.1), with an average of x? = 0.03.

Following Lee & Skillman (2004), the reddening value can be converted to the logarithmic
extinction at Hf as
c(HB) =143 E(B-V). (5)

Our reddening corrections are tabulated in Table 3.

5. “Direct” OXYGEN ABUNDANCE DETERMINATIONS

Accurate “direct” oxygen abundance determinations from H II regions require a measurement
of the electron temperature (typically via observation of the temperature sensitive auroral [O II1]
A4363 line). For the 31 low-luminosity objects for which [O III] A4363 strengths were measured
to be > 40, we use the temperature sensitive ratio comparing “auroral” to “nebular” collisionally
excited lines to determine electron temperatures. A simple, yet reasonable, approximation to the
geometry of an H II region is to assume a two zone volume, where to and t3 are the electron
temperatures (in units of 10* K) in the low and high ionization zones respectively. For the high
ionization zone, the [O III] I(AA4959,5007)/I(A4363) ratio was used to derive a temperature using
the IRAF task TEMDEN. This task computes the electron temperature of the ionized nebular gas
within the 5-level atom approximation. The O (low ionization) zone electron temperature can be
related to the O*™ (high ionization) zone electron temperature (e.g., Campbell et al. 1986; Pagel
et al. 1992). We used the relation between to and t3 proposed by Pagel et al. (1992), based on the
photoionization modeling of Stasinska (1990) to determine the low ionization zone temperature:

ta ! =0.5(t371 4+ 0.8). (6)

The low and high ionization region temperatures are tabulated in Table 4. Typically H II regions
are assumed to have electron temperatures within the range of 1 to 2 x10* K. Temperatures for the
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present sample agree with this approximation, spanning 10,800 K - 15,200 K for the low ionization
region, and 9,600 K - 19,400 K in the high ionization region.

Since the MMT spectra include emission lines from both O" and O*, we determine oxygen
abundances based on our estimated two zone electron temperatures. Spectra which contained
measurable [S II] AA6717,6731 were used to determine electron densities consistent with the low
density limit. Thus, it is reasonable to simply assume n, = 10? cm™3 for this sample. Ionic
abundances were calculated with:

N(X") _ Ingy Jjug
N(HT)  Iug jrs

(7)

The emissivity coefficients, which are functions of both temperature and density, were determined
using the IONIC routine in IRAF. This routine applies the 5-level atom approximation, assuming
the appropriate ionization zone electron temperature, as determined from the oxygen line ratios.

Some abundance determinations require ionization correction factors to account for unobserved
ionic species. Here we assume N/O = N*/O" (Peimbert & Costero 1969). Nava et al. (2006) have
investigated the validity of this assumption. They concluded that although it could be improved
upon with modern photoionization models, it is valid to within about 10%. Thus, we employ this
assumption, mostly for the purposes of direct comparison with other studies in the literature.

For the 9 objects with multiple H II regions containing strong [O III] A4363, an error weighted
average was used to determine a best estimate of relative abundances and oxygen abundances. The
results from individual H II regions are tabulated in Table 4 and the mean values, using a weight
of 1/0? for each component, are listed in Table 5. The uncertainties for these mean values are
represented by the standard deviation of the weighted mean or the weighted dispersion, which ever
is greater. Calculated errors in this paper provide a statistical estimate only. Additional errors
may be important, such as systematic errors due to temperature fluctuations or other imperfect
assumptions. However, the purpose of this paper is to improve the L-Z and M-Z relationships
with abundances from high quality spectra. The statistical errors allow such an assessment of the
relative quality of the spectra used, which in turn are weighted higher in the regression fits.

For 7 of the 9 dwarf galaxies with direct abundances from multiple H IT regions, the derived
oxygen abundances agree within the uncertainties. These support the interpretation that the ISM
in typical dwarf galaxies is chemically well mixed, in agreement with past studies (e.g., Skillman
et al. 1989; Kobulnicky & Skillman 1996, 1997; Lee et al. 2006b; Kehrig et al. 2008; Croxall et
al. 2009; Pérez-Montero et al. 2011). Various theoretical studies support this result (e.g., Roy &
Kunth 1995). However, there are two galaxies for which the oxygen abundances don’t agree. For
NGC 4449 the highest signal to noise spectrum is offset to higher log(O/H) values by 0.16 and
0.18 dex compared to the other two. This discrepancy may be due to the possible contamination
of an embedded supernova remnant (e.g., Skillman 1985), or it may be truly offset. Additional
spectra are needed to clarify this. NGC 2537 has two high quality optical spectra, but the derived
values disagree by 0.26 dex. This factor of nearly two difference is intriguing, warranting further



- 12 —

investigation of this object. We increased the error of the weighted mean to indicate the dispersion
between the two values. Note that the lower value would be in better agreement with the L-Z
relationships, but that the mean is not offset very far. Overall, the oxygen abundances determined
in this paper are all relatively low (12 + log(O/H) < 8.3; average 12 + log(O/H) = 7.84) as we
would expect for low-mass, low-luminosity galaxies. The abundances for the two additional objects
outside of the LVL sample, UGC 4393 and UGC 10818, are discussed in Appendix B.

6. The L-Z and M-Z Relationships

The new “direct” oxygen abundances determined in this paper provide an opportunity to
expand relationships previously limited by the reliability of empirical calibrations. In particular,
these measurements allow us to re-examine the L-Z and M-Z relationships derived by L06, which
are limited by small number statistics at the low luminosity end.

6.1. The Total and “Select” Samples

In the following, we analyze various samples based on both abundance measurement and
distance measurement quality criteria. Specifically, we label the samples of galaxies with both direct
oxygen abundance measurements and accurate distances as “Select.” We observed 31 objects with
[O 111} A4363 detected at a strength greater than 4c; this comprises our total sample. Our “direct”
oxygen abundance measurements have relatively small errors, but comparisons to luminosity and
stellar mass calculations require accurate distance determinations. This motivated further cuts
from our sample to keep only objects with reliable distance determinations using the tip of the red
giant branch (TRGB) or Cepheid variables (ceph), giving rise to our 13 object “Select” sample. In
addition, the L06 data were updated with 4.5 pm photometry from Dale et al. (2009) (to minimize
the effects of aperture differences between the previous photometry and our own), distances from
Dalcanton et al. (2009), and “direct” oxygen abundances from Croxall et al. (2009) when available.
Those objects that passed the selection criteria were assembled into a similar “Select L06” sample
of 14 objects. Other Local Volume objects presented in van Zee & Haynes (2006) and Marble et
al. (2010) were considered for an additional “Select” sample. Using the same criteria mentioned
above, this provided 11 additional objects with “direct” abundances at a strength of 40 or greater
and accurate TRGB distances. The 13 “Select” objects from this paper are noted in Table 5 and
the properties of the additional objects taken from the literature are listed in Table 6. Together
these data sets made the final “Combined Select” sample comprised of 38 objects with both secure
distance (TRGB or ceph) and oxygen abundance determinations ([O III] A\4363 > 40). Note that
we have 18 objects with accurate oxygen abundances that require accurate distances from TRGB
observations in order to be elevated to the “Select” caliber. Of these, 13 have distances less than
8 Mpc, so their TRGB distances could be obtained with a relatively small investment of Hubble
Space Telescope time.
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Due to the wealth of B-band photometry available from previous studies, the majority of the
sample has B-band absolute magnitude estimates. With the addition of Spitzer IRAC photometry,
all members of the “Select” sample also have 4.5 pm absolute magnitudes as determined by Dale et
al. (2009). In the following sections we discuss the low-luminosity portion of both the optical and
NIR L-Z relationships and the subsequently determined M,-Z relationship, for our whole sample
of “direct” oxygen abundances and a comparison to the filtered “Combined Select” sample.

6.2. B-band L-Z Relationship

In the top panel of Figure 3 we compare “direct” metallicities to corresponding B-band lu-
minosities. Taking into consideration the errors on both quantities (c.f., Press et al. 1992), we
determine the most likely linear fit to the data using the MPFITEXY routine (Williams et al.
2010), which depends, in turn, on the MPFIT package (Markwardt 2009). In this section, and
those following, we provide the total scatter (intrinsic + observational) output from the MPFI-
TEXY routine, which is essentially a weighted mean of the scatter of the data about the linear fit.
In each case, we compare our results to that of L06, who also use a weighted dispersion routine.

The best fit to the 31 objects in the current sample with “direct” oxygen abundance measure-
ments results in:

12 4 log(O/H) = (6.59 & 0.32) + (—0.08 = 0.03) M 5, (8)

with a dispersion in log(O/H) of ¢ = 0.19. Updated data for the L06 sample (see § 6.1) is also
plotted, and compared to the original least-squares best fit of L06.

The low-metallicity outlier at 12 + log(O/H) = 7.20 is the blue compact dwarf UGC 5340,
supporting its classification by previous work as one of the most metal-deficient star-forming galaxies
(e.g., Izotov & Thuan 2007a; Pustilnik et al. 2008b). However, Pustilnik et al. (2008b) note that its
present distance could be significantly underestimated due to the large negative peculiar velocity
in that region, which, if true, would result in an even larger discrepancy. Ekta et al. (2008) and
Pustilnik et al. (2008a) have discussed the HI observations of UGC 5340 and concluded that it
is likely undergoing a merger, which could explain, at least in part, its discrepant position from
the L-Z relationship. From HI observations of a sample of extremely metal poor galaxies, Ekta
& Chengalur (2010) find that roughly half of these galaxies show evidence of interactions, and
conclude that the very low metallicities in these galaxies are due to recent infall of metal poor gas
(see also Lee et al. 2004)). Thus, these galaxies do not lie on the L-Z relationship defined by the
average low luminosity galaxy, and therefore, UGC 5340 has not been included in the relationships
of the “Combined Select” sample.b

In the lower panel of Figure 3 we plot the 38 objects in the “Combined Select” sample. The

SAt this time the H I morphologies have not been analyzed for the LVL sample, so we cannot make predictions
about the infall of unenriched gas for these galaxies.
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best fit is given by:
12 + log(O/H) = (6.27 +0.21) + (—0.11 & 0.01)M . (9)

with a resultant dispersion in log(O/H) of o = 0.157. Note that the luminosity error bars represent
the error propagated from the uncertainty in the photometry and distances. This relationship
agrees with that of LL06 within errors. Additionally, the MPFITEXY routine allows us to estimate
the intrinsic scatter by ensuring that x?/(degrees or freedom) = 1. Using this tool, the intrinsic
scatter in log(O/H) for the B-band L-Z relationship for the “Combined Select” sample is 0.13 dex,
i.e., most of the scatter in this relationship is intrinsic.

6.3. 4.5 ym L-Z Relationship

L06 found their L-Z slope to be smaller in the NIR than in the optical and to contain less
scatter. This result might be expected since luminosities in redder bands are less sensitive to dust
extinction and star formation rates than optical luminosities. However, these NIR luminosities are
also vulnerable to stochastic effects from the high NIR luminosities of AGB stars. Following the
motivation given in L06, we analyze the 4.5 pm L-Z relationship.

In the top panel of Figure 4, we plot the 4.5 ym L-Z relationship for our low-luminosity LVL
sample. Our results are well matched to the luminosity-metallicity relationship for dwarf galaxies
found by L06 (and corroborated by Marble et al. 2010). Using the MPFITEXY least-squares fit to
our data, the resulting expression is:

12 + log(O/H) = (6.37 £ 0.33) + (—0.08 £ 0.02) M}y 5], (10)

with a standard deviation in log(O/H) of o = 0.18. The original L06 least-squares fit and the
updated L06 data are also plotted in Figure 4, displaying an equivalent slope, but with a notably
smaller dispersion in log(O/H) of only 0.12. Note that while the two fits have the same slope, they
are offset from one another by roughly 0.1 dex in log(O/H); this difference is within the error and
can be attributed to the difference in samples and small sample size.

In the bottom panel of Figure 4 we have plotted the NIR L-Z relationship for the “Combined
Select” sample. A least-squares fit results in:

12 + log(O/H) = (6.10 £ 0.21) + (—0.10 = 0.01) My 5 (11)

and produces a standard deviation of o = 0.14%. This is nearly identical to the standard deviation
of 0 = 0.15 found for the “Combined Select” sample for the optical L-Z relationship, and the slopes
are the same within the uncertainties.

"Dispersion in log(O/H) of the “Combined Select” sample increases to o = 0.18 if UGC 5340 is included.
®Dispersion in log(O/H) of the “Combined Select” sample increases to o = 0.22 if UGC 5340 is included.
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The intrinsic scatter in log(O/H) for the 4.5 ym L-Z relationship for the “Combined Select”
sample is 0.11 dex. Since AGB stars can have significant impact on the NIR luminosities, we must
consider the effect of stochastic sampling on the overall scatter of our relationship. However, since
we find such a small scatter in the NIR, L-Z relationship it is unlikely to be due to AGB stars, which
would normally drive the data to a larger dispersion. L06 determined dispersions in the optical
and NIR L-Z relationships of 0.161 and 0.122 respectively. In comparison, the present work does
not find a significant difference between the dispersions of the NIR and optical L-Z relationships.
However, the NIR intrinsic scatter in log(O/H) is slightly smaller than the intrinsic scatter for the
B-band L-Z relationship for the “Combined Select” sample (0.11 versus 0.15 dex).

6.4. M,-Z Relationship

The underlying relationship between mass and luminosity and the relative ease of measuring
luminosities has allowed a widespread use of the L-Z relationship. However, mass is thought
to be more fundamentally related to metallicity (see, e.g. Tremonti et al. 2004), and so, when
possible, metallicity is also investigated as a function of stellar mass. In order to examine the
M,-Z relationship, we need to estimate stellar masses in a self consistent way. Although SED
fitting is commonly used to determine individual masses, the necessary spectral and/or photometric
components were not available to us for our entire “Combined Select” sample. Stellar mass can
also be inferred from luminosity, where optical colors have been widely used to estimate M /L ratios
(e.g., Brinchmann & Ellis 2000; Bell & de Jong 2001). It is important to note the uncertainties
in M/L ratios that occur due to variations in the current star formation rate, which are most
significant if galaxies have formed a substantial fraction (>10%) of their stars in a recent episode.
Near IR magnitudes are often a better choice to characterize the galaxy luminosity because they are
less sensitive than bluer bands to extinction and the age of the stellar population. The dominant
emission in NIR wavelengths arises from the stellar populations (as opposed to dust) and is only
marginally sensitive to recent star formation, but even so, NIR stellar M /L ratios can vary by up
to a factor of ~2 due to the star formation rate and stellar metallicity (Bell & de Jong 2001).
Furthermore, Lee et al. (2006a) found that although individual stellar masses can vary by as much
as ~0.5 dex with M/L model, the subsequent M-Z relationship spanning four decades in stellar
mass is nearly independent of the model chosen.

We chose to estimate stellar mass in a uniform manner from 4.5 pgm luminosity and K — [4.5]
and B — K color following the method presented by L06:

log M, = log(M,/Lk) + [log Ljy5 — 0.4 (K — [4.5])]. (12)

L06 derived a mass-to-light ratio (M,/Lg) as a linear function of B—K color based on the Bruzual
& Charlot model with a Salpeter IMF. Note that there is a systematic uncertainty in NIR M/L
ratios of ~0.2 dex due to uncertainties in AGB evolution (e.g., Conroy & Gunn 2010; Melbourne
et al. 2012). Since K photometry is available for the LVL sample (Dale et al. 2009), unlike
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the procedure of L06, the B — K color was calculated directly (we assume Mg = Mg, ). Based
on the direct relationship between the ratio of luminosities and ratio of absolute magnitudes for
two objects, we calculated monochromatic luminosities, Ly 5), assuming My 5 =~ 3.3 for the Sun
(following the logic of L06). The M, results are tabulated in Table 1.

In principle, mass estimates can be improved using SED fitting to broad-band photometry
which span from the UV to the IR. Johnson et al. (2012) have determined masses for the LVL
galaxies using this method. Unfortunately, the broad wavelength coverage and associated analysis
is not available for the entire LVL survey, including objects in our sample. There are 41 LVL
galaxies for which we have obtained new spectra or which have spectra in the literature with
masses computed by Johnson et al. to which we can compare our stellar masses determined from
4.5pum luminosities. We find an average difference of 0.23 dex in mass, or an offset of a factor
of ~2, in the sense that the SED derived masses are smaller and independent of luminosity or
optical color. This difference can be accounted for by the use of different IMFs in the modeling
(Salpeter IMF in Bell & de Jong (2001) and Chabrier IMF in Johnson et al. (2012)). Note that
this average difference, as well as the dispersion of 0=0.24, is smaller than the typical uncertainty
in our derived masses. Therefore, adopting these masses would not affect the slope of our derived
M-Z relationship. Because we do not have SED derived masses for our entire “Combined Select”
sample, we report the present relationship using the masses calculated here.

M,-Z data are plotted in the top panel of Figure 5 in comparison to the updated L06 data and
original M,-Z relationship of L06. The best fit to our data,

12 +1log(O/H) = (5.43 £ 0.42) + (0.30 £ 0.05) log(M,), (13)

with a dispersion of o = 0.21, agrees, within errors, with the fit to the L06 data set. This dispersion
is notably larger than the 0.12 dispersion in log(O/H) found by L06. The mass error bars used
here are the propagated errors from the 4.5 pm luminosity, K-[4.5] color, and mass-to-light ratio
(where we substituted the uncertainty in B-K color). Note that the contrast in dispersion of the
two data sets is largely due to the different errors. L06 assumed the same errors for their mass
determinations as their 4.5 pm luminosities, whereas we incorporated the additional propagated
error from the color terms. This difference accounts for the disparity in uncertainty.

On the bottom of Figure 5 we have plotted the “Combined Select” M-Z data. Fitting the
combined data set produces the least-squares linear fit,

12 + log(O/H) = (5.61 % 0.24) + (0.29 + 0.03) log(M,.), (14)

with a standard deviation of ¢ = 0.15%, which is essentially equivalent to the dispersions of the
“Combined Select” L-Z data sets. The intrinsic scatter in log(O/H) for the M,-Z relationship
for the “Combined Select” sample is 0.08 dex. This appears to be significantly smaller than the

“Dispersion in log(O/H) of the “Combined Select” sample increases to o = 0.21 if UGC 5340 is included.
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intrinsic scatter in log(O/H) for the 4.5 pum L-Z relationship for the “Combined Select” sample of
0.11 dex.

The dual effects of increasing the number of objects observed and selecting only objects with
both reliable oxygen abundances and distances has resulted in a better characterization of the 1-Z
and M-Z relationships. In this work, we assume that a galaxy with an H II region of sufficiently
high surface brightness to allow a A4363 measurement is a local property of the star forming
region, and not related to a characteristic property of the host galaxy. Thus, we don’t believe our
sample to be biased in terms of mass or galaxy type. Additionally, the observation that strong-line
abundances of low-mass galaxies are consistent with the relationships derived here, albeit with
increased scatter, supports this assumption. Therefore, the L-Z and M-Z relationships presented
here should accurately represent low-mass galaxies in general. In high mass galaxies, Tremonti
et al. (2004) found a decrease in the dispersion in the L-Z relationships as one went from ¢ = 0.16
for the optical B-band to ¢ = 0.13 for the longer wavelength z-band, and then an even smaller
dispersion of ¢ = 0.10 for the M-Z relationship. The “Combined Select” data show a negligibly
smaller dispersion for the NIR L-Z relationship compared to the B-band, and no similar decrease
in dispersion for the M-Z relationship.

7. N/O Relative Abundances

The N/O versus O/H trend is well studied in galaxies of varying types. Vila Costas & Edmunds
(1993) presented a thorough overview of theoretical expectations and observations available at the
time. A salient point is that N can be produced as both a primary and a secondary element and
that the secondary component is expected to be delayed relative to oxygen and to dominate at high
abundances. A typical scenario might be described by oxygen production in Type II supernovae
being released 10 Myr after star formation, whereas nitrogen forming in intermediate mass stars
isn’t released until much later times (> 108 Myr; Kobulnicky & Skillman 1996). Initially, N/O is
expected to rapidly decrease as oxygen is returned to the interstellar medium, but will gradually
increase with time as nitrogen begins to be returned to the gas reservoir. Thus, in principle, the
relative N/O abundance can be used as a clock (e.g., Henry et al. 2000) to indicate the time since
the most recent burst of star formation. Note that this effect is not expected if the star formation
rate does not show significant variations (Molla et al. 2006).

Table 5 lists the error weighted average N/O values for our sample. The N/O errors were
determined by first adding in quadrature the error in flux of both [O II] A3727 and [N II] 6584,
then adding this value in quadrature with the error in temperature of the low ionization zone.
The most extreme values extend from log(N/O) = —1.77 to —1.00, with an average of log(N/O)
= —1.47; this is comparable to the isolated dwarf irregular sample examined by van Zee et al.
(2006, hereafter vZ06), with an average log(N/O) = —1.41. We tested for a correlation of N/O
with reddening and found none, indicating an absence of bias in this regard.
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The 9 objects with multiple “direct” oxygen abundances provides the opportunity to study
N/O variations in individual dwarf galaxies. The average N/O ratio dispersion of different H II
regions in a given galaxy is only 0.08 dex, indicating that dwarf galaxies, despite appearing to
be solid body rotators (Skillman et al. 1988), are well mixed (see also e.g., Roy & Kunth 1995).
Other studies, such as the green pea galaxies analyzed by Amorin et al. (2010) and the nitrogen
enriched dwarf galaxies analyzed by Pérez-Montero et al. (2011), find N/O abundance dispersions
or small gradients hypothesized to be a combination of outflows of enriched gas and inflows of
metal-poor gas. Note that errors in N/O account for the dispersion within four of the objects that
have multiple N/O measurements (UGC 1056, UGC 4278, NGC 3738, and NGC 4449), but not for
5 others (NGC 784, NGC 2537, UGC 4393, UGC 5423, and UGC 8638). For two of these objects
(NGC 784 and UGC 4393) the differences in N/O are significant (0.19 and 0.15). In these last
two cases in could be that significant nitrogen enhancement has been detected, although not at the
level of the well studied galaxy NGC 5253 (e.g., Kobulnicky et al. 1997; Lépez-Sénchez et al. 2012)
or the more recently discovered N/O anomaly in MRK 996 (James et al. 2009).

vZ06 looked at several variables for their possible influence on N/O abundance. In particular,
they found a correlation between N/O and color, in the sense that redder galaxies have higher
N/O as one might expect from time delayed N release. In the top panel of Figure 6, log(N/O)
is plotted vs. B — V color for objects of our sample with “direct” abundances and measurable
[N 11]/[O 11] abundances. Similar to vZ06, we find a fairly steep increase in N/O with redder color
(demonstrated by the dotted least squares fit):

1og(N/O) = (—=1.96 +0.12) 4 (1.22 +0.26) x (B — V). (15)

with a dispersion of ¢ = 0.13. In fact, the two groupings of points are visually consistent with one
another. When the additional objects from the literature are added to the plot, the least squares
fit over 0.05 < B —V < 0.75 to all of the data is

log(N/O) = (—1.92 4 0.08) + (1.18 +0.19) x (B — V), (16)

which agrees well with the relationship found by vZ06. Below B — V = 0.10 there are two objects
with discrepantly large N/O values. Therefore, we suggest this fit is most appropriate for the range
of 0.20 < B —V < 0.75. Note the appearance of significant scatter in this figure. We calculate a
dispersion in log(N/O) of ¢ = 0.14 dex, with an estimated intrinsic scatter of 0.10 dex.

Additionally, the bottom panel of Figure 6 shows log(N/O) plotted vs. 12 + log(O/H) for the
same sample. Above 12 4 log(O/H) ~ 7.7 a trend of N/O increasing with O/H is evident, despite
the large scatter. For 12 + log(O/H) > 7.7, the best fit to our data yields:

log(N/O) = (—5.49 & 1.36) + (0.51 + 0.17) x [12 + log(O/H)], (17)

with a dispersion of o = 0.16, where the estimated intrinsic scatter is 0.14 dex. With an increasing
slope, this would be indicative of secondary N production in this region. Garnett (1990) proposed
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that much of the scatter in the 12 + log(O/H) vs log(N/O) relationship could be explained by the
time delay between producing oxygen and secondary nitrogen.

For the systems with 12 + log(O/H) < 7.7, in agreement with previous studies, there is little
trend in N/O with O/H. We have calculated a weighted mean in N/O using the IDL routine
MPFITEXY with the added constraint of setting the slope to zero for the points below 12 +
log(O/H) = 7.7. For our eight new observations, the weighted mean is log(N/O) = —1.56 with
a standard deviation of 0.05. For the nine observations from the literature, the weighted mean is
log(N/O) = —1.51 with a standard deviation of 0.04. For the two sets together we obtain log(N/O)
= —1.56 with a standard deviation of 0.05. Of this dispersion, the intrinsic scatter is predicted
to be 0.02, so observational scatter may play a large role in determining the observed scatter in
this relationship. In most previous studies, no correlation is noted between 12 + log(O/H) and the
relative N/O abundance at low oxygen abundances, where nitrogen is expected to behave like a
primary nucleosynthesis element. Together the new observations are consistent with the trends in
N/O with O/H observed by Vila Costas & Edmunds (1993), Lee et al. (2004), van Zee & Haynes
(2006), Moll4 et al. (2006), and Liang et al. (2006).

8. Discussion
8.1. The L-Z and M-Z Relations for Low Luminosity Galaxies

The dual effects of increasing the sample size and selecting only objects with both reliable
oxygen abundances and distances has resulted in an improved characterization of the L-Z and M-Z
relationships. In high mass galaxies, Tremonti et al. (2004) found a decrease in the dispersion in
the L-Z relationship as one went from the optical B-band (¢ = 0.16) to the longer wavelength
z-band (o = 0.13), and an even smaller dispersion for the M-Z relationship (¢ = 0.10). The present
data show only a slightly smaller dispersion for the NIR L-Z relationship (¢ = 0.14) compared to
the B-band (¢ = 0.15), but no similar decrease in dispersion for the M-Z relationship (o = 0.15).
However, our estimates of the intrinsic scatter in the three relationships do show a decreasing
trend in the sense that the intrinsic scatter of the B-band L-Z relationship is largest (o = 0.13),
followed by the NIR L-Z relationship (o = 0.12), then the M-Z relationship (o = 0.08). While this
trend could be an artifact of how the errors are estimated for the three different parameters, it is
interesting that it follows the same pattern observed in the larger spiral galaxies. Perhaps what is
most remarkable is the small intrinsic scatter in all three relationships. When averaging the light
over an entire galaxy, as done in Tremonti et al. (2004) one might expect relatively low dispersions.
However, oxygen abundances derived from spectroscopic apertures only covering a fraction of the
galaxy will be biased if radial gradients exist (e.g., Moustakas et al. 2012). Therefore, one might
expect much larger dispersions when observing individual H II regions, yet this is not the case
observed in most dwarf galaxies, as they have been shown to be relatively chemically homogeneous
(e.g., Croxall et al. 2009).
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The L-Z and M-Z relationship slopes determined for the “Combined Select” sample are similar
to those found in previous studies (e.g., Tremonti et al. 2004; Lee et al. 2006a). For large galaxies,
a different slope may apply as galaxies higher in mass and luminosity contain more metals and dust
(e.g., Rosenberg et al. 2006) causing them to appear under-luminous. For smaller, less luminous
galaxies, even with the present sample included, the number of galaxies meeting our “Select” criteria
is still relatively small. This limitation could affect our measurements of the scatter, but it appears
that these relationships have intrinsically smaller dispersions. The evolutionary paths of dwarfs
are still poorly understood, making the source of this inherent variation unclear. Some studies
argue for the importance of gas infall and outflows (e.g., Garnett 2002), whereas others point to
star formation efficiencies (e.g., Lequeux et al. 1979; Brooks et al. 2007), and variations in initial
mass functions (e.g., Képpen et al. 2007). Still other studies have also seen significant scatter at
low stellar masses (see for example Tremonti et al. 2004; Amorin et al. 2010).

Amorin et al. (2010) suggest that inherent variation in the L-Z and M-Z relations could result
from these objects being relatively young and thus may still be converting large amounts of cold
gas into stars. If these young galaxies have not had enough time for several generations of star
formation to produce massive AGB stars, then we would expect very little absorption due to dust.
The relative uniformity between the dispersions of the L-Z and M-Z relationships and between the
slopes of the optical and near-IR L-Z relationships is consistent with this idea, suggesting no more
absorption in the optical than in the near-IR, and thus very little dust is present in these low-
luminosity galaxies. The fact that the scatter in the L-Z and M-Z relationships is small suggests
that AGB stars do not play as significant of a role in determining the scatter in the NIR L-Z
relationship for low-mass galaxies. In fact, in our sample it seems that AGB stars are balanced out
by the effects of star formation histories. Whatever the actual source of the scatter may be, since
we used the most reliable oxygen abundances and distance estimates possible in constructing the
L-Z and M-Z relationships, it appears that the dispersion for this sample is real as it is larger than
observational errors. However, the “young galaxy” hypothesis faces other observational challenges.

8.2. N/O and the Young Galaxy Hypothesis

Garnett (1990) first showed that the N/O ratio in low metallicity star forming galaxies is
relatively constant as a function of O/H (with a mean value of log(N/O) = —1.467013) for these
“plateau” objects. Later, Izotov & Thuan (1999) drew attention to the plateau with small dispersion
in log (N/O) (—1.60 = 0.02) in extremely metal-poor (12 + log(O/H) < 7.6) blue compact dwarf
galaxies. They proposed that the absence of time-delayed production of N (and C) is consistent
with the scenario that extremely metal-poor galaxies are now undergoing their first burst of star
formation, and that they are therefore young, with ages not exceeding 40 Myr. They further argued
that if this were true, then this would argue against the commonly held belief that C and N are
produced by intermediate-mass stars at very low metallicities (as these stars would not have yet
completed their evolution in these lowest metallicity galaxies). Nava et al. (2006) revisited the
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observed N/O plateau with a large set of objects and determined a mean value for the N/O plateau
of —1.43 with a standard deviation of J_rgjgg}l. They further concluded from a x? analysis that only
a small fraction of the observed scatter in N/O is intrinsic.

From the bottom panel of Figure 6, we see that the sample assembled here also shows a plateau
in N/O of log(N/O) = —1.56 £ 0.05. The level of the plateau in our data is slightly lover than
found by Nava et al. (2006), but agrees fairly well with that found by Izotov & Thuan (1999).
While the observed dispersion is larger than that found for the blue compact dwarfs by Izotov
& Thuan (1999), the intrinsic dispersion agrees well for the two samples. Clearly the relatively
constant N/O value is a common characteristic of dwarf star forming galaxies, and not just those
undergoing a current burst of star formation. van Zee et al. (2006) demonstrated that Leo A, with
12 4 log(O/H) = 7.38 £+ 0.10 and log(N/O) = —1.53 £ 0.09, and GR 8, with 12 + log(O/H)
= 7.65 £+ 0.06 and log(N/O) = —1.51 + 0.07, which are not blue compact dwarf galaxies, are
consistent with this plateau in log(N/O) at low values of O/H. However, both Leo A and GR 8
have detailed star formation histories derived from Hubble Space Telescope observations of their
resolved stars which clearly show that the bulk of their star formation occurred well before the last
40 Myr (Tolstoy et al. 1998; Cole et al. 2007; Dohm-Palmer et al. 1998; Weisz et al. 2011). In fact,
Weisz et al. (2011) show, from a nearly volume limited sample, that the majority of dwarf galaxies
formed the bulk of their stellar mass prior to z ~ 1, regardless of current morphological type. Since
the low mass, metal-poor galaxies in the present sample and works cited appear to have nearly the
same value of N/O, regardless of whether they have a current burst of star formation, it would
seem that the young galaxy hypothesis is not a valid explanation for the plateau in N/O at low
metallicity.

If the plateau in N/O is not due to young galaxy ages, what is its cause? Clearly nitrogen is
behaving as a primary element at low metallicities. Henry et al. (2006) considered various scenarios
and concluded that a wide range were consistent with the observations. At this point, a definitive
explanation for the N/O plateau appears elusive.

8.3. Best Estimate of Abundances

Determining an accurate and reliable oxygen abundance for an individual H II region depends
on measuring the combination of bright nebular and faint auroral emission lines (the “direct”
method). Many studies have emphasized that a “direct” abundance is not without systematic
uncertainties. Specifically, due to the high temperature sensitivity of the “direct” method, inho-
mogeneous temperature distributions will lead to abundance underestimates. The uncertainty in
the absolute oxygen abundance determination by this method is ~ 0.1 dex, but the error in rel-
ative metallicities is likely to be << 0.1 dex (Kewley & Ellison 2008). However, Bresolin (2007)
warns that Te-based determinations only provide a lower limit if the temperature fluctuations are
substantial.
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In the absence of a temperature-sensitive auroral line detection, a mix of strong emission lines
are used as a proxy for metallicity (strong-line methods: empirical, semi-empirical, and theoretical
calibrations). Strong-line calibrations are limited by sample selection effects, potentially making
them appropriate for ranking objects on a single scale, but not useful for determining an absolute
metallicity as the various methods do not converge (see e.g., Yin et al. 2007; Kewley & Ellison
2008; Bresolin et al. 2009; Berg et al. 2011). If a strong-line method must be used, Stasinska (2010)
recommends only using a strong-line method for nebulae having the same properties as those of the
calibration sample.

Oey & Shields (2000); van Zee & Haynes (2006); van Zee et al. (2006); Yin et al. (2007); Kewley
& Ellison (2008); Pérez-Montero & Contini (2009); Amorin et al. (2010); Moustakas et al. (2010),
and others have investigated several strong-line calibrations including the O3N2 method, the N2
method, and the Reos index, finding inconsistencies between methods that were largely related to
variations in the hardness of the ionizing radiation field, nitrogen abundance, and/or age of the
stellar cluster. There are several strong-line methods to chose from, but when compared they all
have similar uncertainties of 0.1-0.2 dex and discrepancies between them as large as 0.6 dex (e.g.,
Liang et al. 2006; Bresolin 2007; Yin et al. 2007; Kewley & Ellison 2008). Improvements have been
made in strong-line calibrations by the introduction of photoionization models to simultaneously fit
the most prominent emission lines (e.g., Tremonti et al. 2004; Brinchmann et al. 2004). However,
Yin et al. (2007) found the MPA /JHU simultaneous line fitting SDSS abundances determined from
the Charlot et al. (2006) photoionization models overestimate oxygen abundances by ~0.34 dex
compared to direct abundances. They postulate the difference to be due to the models treatment of
the onset of secondary nitrogen production, and thus could be eliminated with improved modeling.
One possible exception is the ONS calibration of Pilyugin et al. (2010), for which they find deviations
from T.-based oxygen abundances of just ~0.075 dex.

Here we investigate a subset of strong line abundances for our objects with “direct” abundances.
Following the methodology of Berg et al. (2011), we calculated oxygen abundances from their strong
lines for the 31 objects with “direct” abundances listed in Table 5. We determined abundances
using the Rgz calibration of McGaugh (1991), the ONS calibration of Pilyugin et al. (2010), and
the N2 and O3N2 calibrations updated by Pérez-Montero & Contini (2009, hereafter PMCO09).
The Rog calibration of McGaugh (1991) produces a bi-valued solution, so to discriminate between
the two branches McGaugh (1994), van Zee et al. (1998), and others advised using the ratio of
I([N 1II] A6584)/I([O ] A3727). McGaugh (1994) suggested that [N II]/[O II] is approximately
< 0.1 for low abundances and > 0.1 for high abundances, giving a rough distinction between lower
and upper branches. Using this distinction, we selected the appropriate branch calibration for each
object. Note that for metal poor objects with enhanced nitrogen, [N II]/[O II] becomes a biased
discriminator (e.g., Yin et al. 2007; Berg et al. 2011; Pérez-Montero et al. 2011). In a similar fashion,
the ONS method of Pilyugin et al. (2010) requires two discriminators, [N II] and [N II]/[S 1I], to
distinguish between three classes of H II regions.

We followed Berg et al. (2011) and assumed T, = 1.25 x 10* K to examine N/O ratios and
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calculate abundances with the N2 and O3N2 calibrations of PMCO09. This correction may be
important for NGC 2537 and UGC 4393, which appear to have somewhat discrepant nitrogen
abundances (nitrogen enrichment for log(N/O) > -1.0). The other objects in this sample have
average N/O ratios for their masses (see e.g., Berg et al. 2011). The results are tabulated in
Table 8.

The mean offsets and dispersions relative to the direct abundances are calculated and given
at the bottom of Table 8. Table 8 shows that all four methods have significant dispersions, with
the ONS method showing the smallest dispersion (although larger than anticipated) and the O3N2
method having the largest. The ONS method also has the smallest mean offset. Figure 7 presents
a plot of differences between the Rg3 and ONS method abundances and the direct abundances
as a function of abundance. This illustrates the results of Table 8, that the ONS method has a
smaller dispersion and a smaller mean offset from the direct method. Thus, our data favor the ONS
method, but do not support the claim of the very small error as found by Pilyugin et al. (2010). In
Figure 7 we find no clear trend exists between the “direct” method and the strong-line methods,
implying that simple calibrations between methods are not possible.

With the relatively precise M-Z and L-Z relationships in place, and their correspondingly low
dispersions, oxygen abundances for normal (non-starburst) low luminosity galaxies can be inferred
with relatively high confidence without a spectrum. In fact, given reliable distance and photometry
measurements, the resulting luminosity and mass estimates can be used as more reliable predictors
of oxygen abundance than some strong-line calibrations. As counter-intuitive as this idea may
seem, it is a natural consequence of the inability of some strong-line methods to accurately predict
the metallicity of individual H II regions. Studies of abundances in dwarfs which do not reproduce
the L-Z and M-Z relationships, therefore, should raise suspicions concerning methodology.

9. CONCLUSIONS

We have determined uniform oxygen abundance metallicities for 31 low luminosity galaxies
in the Spitzer LVL survey. With high-resolution spectral observations taken at the MMT, we
were able to measure the intrinsically faint [O III] A\4363 fluxes at strengths of 40 or greater and
explicitly determine electron temperatures. Metallicity measurements are important for character-
izing many other properties, especially when the more reliable “direct” method is used. However,
metallicity relationships tend to suffer from small number statistics in the low luminosity regime.
In particular, these measurements allowed us to better characterize the luminosity-metallicity and
mass-metallicity relationships by doubling the number of reliable low-luminosity measurements.
We created a “Combined Select” sample of objects that have both reliable “direct” oxygen abun-
dance determinations and distances estimated from the tip of the red giant branch or Cepheid
variables. With this sample, we find that both the luminosity-metallicity and the mass-metallicity
relationships agree well with previous relationships defined for low luminosities.
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From the 38 objects making up the “Combined Select” sample, we found an optical L-Z
relationship of 12 +1log(O/H) = (6.27+0.21) 4+ (—0.11£0.01) Mp, with a dispersion of o = 0.15. In
comparison, the near-IR L-Z relationship for this data is 12 +log(O/H) = (6.10 £0.21) 4+ (—0.10 +
0.01) M}y 5), with a dispersion of o = 0.14. While the slopes of the two L-Z relationships agree, our
findings confirm the work of L06 in that the near-IR relationship has lower scatter. By converting
NIR luminosity to a stellar mass estimate, we determined the M-Z relationship for our data to be
12 4+ log(O/H) = (5.61 £ 0.24) + (0.29 £ 0.03)M,, with a dispersion of ¢ = 0.15. In agreement
with the idea that mass is more fundamentally related to metallicity than luminosity, we find that
the intrinsic scatter of the optical L-Z, NIR L-Z, and M-Z relationships decreases from 0.13 to
0.12 to 0.08. However, the total dispersion of the M-Z relationship was measured to be no smaller
than the L-Z relationships. This suggests, given a reliable distance measurement and appropriate
photometry, luminosity is just as strong of a metallicity indicator as stellar mass. Furthermore,
with the dispersions in luminosity and mass roughly equal, either may be used in combination
with a reliable distance determination to estimate metallicity of a low luminosity dwarf with more
confidence than when using strong-line calibrations.

Our observations of N/O abundances are in agreement with previous studies. We find a
positive correlation between N/O ratio and B-V color for 0.05 < B —V < 0.75; log(N/O) =
(—1.924+0.08) + (1.18 £0.19) x (B — V), with a dispersion of ¢ = 0.14. Furthermore, in agreement
with observations of blue compact galaxies, there are no objects with high N/O ratio (log(N/O)
> -1.4) below 12+4log(O/H)=7.7. Since the typical low luminosity galaxy in the Local Volume
displays roughly constant star formation over the age of the universe, the small dispersion in N/O
at low values of O/H cannot be due to the very recent birth of the galaxy.
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A. Strong-Line Abundances for Galaxies Lacking Direct Abundances

In Table 9 we present strong-line abundances for the 12 objects in our sample without [O III]
A4363 detections. While these may not be as accurate as the direct abundances for the rest of our
sample, they may be useful for studies of these individual galaxies. The O/H values derived using
the ONS method for both these 12 objects (Table 9) and the objects with “direct abundances”
(Table 8) are plotted in Figure 8 where they are compared to our “direct” abundances. The two
methods display coincident trends in metallicity with mass, yet the O/H abundances derived via
the ONS calibration have a larger dispersion. We have not conducted a statistical comparison, as
not all galaxies have accurate distances, and the subset with accurate distance is quite small.

B. 70/160 um Color Temperature-Metallicity Outliers

As noted in § 2.2, two objects were of particular interest to this study (UGC 10818 and UGC
4393) because they appear to be outliers from the global trend of 70/160 pm color temperature
as a function of metallicity as determined by Engelbracht et al. (2008). Specifically, based on
Spitzer observations of 66 starburst galaxies, they showed that the far-infrared color temperature
of large dust grains increases toward lower metallicity down to 12 + log(O/H) ~ 8. However, the
oxygen abundances found by Engelbracht et al. (2008) for these two objects were based on the
Ra3 strong-line estimator. Our new spectroscopic results indicate that both UGC 4393 and UGC
10818 (SHOC 567) are near the transition region between the upper and lower branches based on
their [N I1]/[O II] ratios, and thus the Rgs method may not yield an accurate abundance for these
systems.

While our observations of UGC 10818 are still ambiguous due to the degeneracy in the strong-
line metallicity calibrations, we derive an oxygen abundance of 12 + log(O/H) = 7.82 based on the
McGaugh (1991) Rgs calibration. This increases the oxygen abundance of UGC 10818 by 0.51 dex
compared to previous measurements and moves UGC 10818 (SHOC 567) closer to the original trend
illustrated in Engelbracht et al. (2008). Conversely, the “direct” oxygen abundance of UGC 4393
was determined in this paper to be 12 + log(O/H) = 8.02 +/- 0.05, in agreement with the strong-
line estimate presented in Engelbracht et al. (2008). Thus, at first glance, these new observations
appear to only impact the location of one of the two most extreme outliers in the original plot.

Perhaps more importantly, we have reproduced the 70/160 pm color temperature versus 12 +
log(O/H) plot of Engelbracht et al. (2008) with the addition of “direct” abundance objects from
this work in Figure 9. Note that the star-bursting objects from Engelbracht et al. (2008) tend
to have higher dust temperatures than the low intensity objects studied in this paper. This may
mean that the trend of increasing far-infrared dust temperature with decreasing metallicity was
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just a slice of a larger picture, where the selected samples were limited by star formation rates,
which biased the view to a more narrow window. With a more complete range of intensities in star
forming galaxies now plotted, no clear trend emerges.
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Table 2. Observing Log

Slit RA Dec PA Run Tint
Position (2000) (2000) (deg) (sec)
UGC 521-A 00:51:11.9  12:01:34  -55.71  Nov08 3 x 900
UGC 521-B 00:51:12.1  12:01:31  -55.71  Nov08 2 x 900
UGC 695-E 01:07:46.5 01:03:53  29.44  Janl0 4 x 900
NGC 0404-A 01:09:26.0  35:43:00 -76.70  Janl0 3 x 600
UGC 1056-A 01:28:47.3  16:41:16 45.19 Janl0 3 x 900
UGC 1056-B 01:28:47.5 16:41:21 45.19 Janl0 4 x 900
UGC 1176-A 01:40:11.9  15:54:46 42.14 Jan1l0 4 x 900
UGC 784-B 02:01:16.5  28:50:06  52.76  Janl0 4 x 900
UGC 784-A 02:01:17.5  28:50:16 52.76 Jan1l0 4 x 1200
UGC 2716-A 03:24:07.2 17:45:11 63.24 Jan1l0 3 x 900
KKH 037-A 06:47:43.1  80:07:27 -176.05 Janl0 1 x 1800
NGC 2537-A 08:13:13.0  45:59:39  -94.27  Janl0 3 x 900
NGC 2537-B 08:13:13.3  45:59:39  -94.27  Janl0 3 x 900
UGC 4278-B 08:14:00.2  45:42:58 -128.00 Oct08 3 x 1800
UGC 4278-A 08:14:00.0 45:42.57 -128.00 Oct08 3 x 1800
NGC 2552-A 08:19:17.1  50:00:14 -120.00 Oct08 3 x 1200
UGC 4393-B 08:26:05.3 45:58:10 -124.65 Janl0 3 x 900
UGC 4393-C 08:26:01.5 45:47:43 -124.65 Janl0 3 x 900

CGCG 035-007-A  09:34:44.4 06:25:31  42.78  Janl0 3 x 900
UGC 5139-A 09:40:16.0  71:10:06 -140.00 Nov08 4 x 1200
IC 559-A 09:44:42.9  09:36:54  -64.15  Janl0 4 x 900
UGC 5272-A 09:50:22.3  31:29:15  -80.51 Oct08 3 x 600
UGC 5340-A 09:56:46.8  28:50:10 -75.61  Janl0 4 x 900
UGC 5423-A 10:05:28.7  70:22:05 127.00 Janl0 3 x 900
UGC 5423-B 10:05:32.1  70:21:52  127.00 Janl0 3 x 900
UGC 5672-A 10:28:21.1  22:34:05 -57.80 JanlO 4 x 900
UGC 5692-A 10:30:34.8  70:37:11 -147.53 Janl0 4 x 900
UGC 5797-A 10:39:25.0  01:43:00  -4.17  Janl0 3 x 900
UGC 5923-A 10:49:07.5 06:55:08  20.00  Janl0 5 x 600
NGC 3738-A 11:35:46.8  54:31:32 93.73 Jun09 4 x 900
NGC 3738-B 11:35:48.2  54:31:31 93.73 Jun09 4 x 900
NGC 3741-A 11:36:05.9  45:17:00 101.03  Jun09 3 x 1200
UGC 6782-A 11:48:57.2  23:50:32  64.55  Jun09 3 x 1200
UGC 6817-A 11:50:52.9  38:52:52  93.87  Jun09 3 x 1200
UGC 6900-A 11:55:36.2  31:31:19 81.43 Jun09 3 x 1200
UGC 4163-A 12:12:09.4  36:09:59  87.48  Jun09 3 x 1200

CGCG 269-049-A  12:15:46.6  52:23:14 -187.93 Janl0 4 x 900
UGC 7577-A 12:27:42.8  43:29:06  100.00 Jun09 3 x 1200
NGC 4449- C 12:28:14.5 44:07:13  75.00 Jun09 3 x 600
NGC 4449- B 12:28:14.1  44:07:12 75.00 Jun09 3 x 600
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Table 2—Continued

Slit RA Dec PA Run Tint
Position (2000) (2000) (deg) (sec)
NGC 4449-A  12:28:13.9  44:07:10  75.00  Jun09 3 x 600
UGC 7599-A  12:28:27.2 37:14:16 86.11 Jun09 3 x 1500
UGC 7605-A  12:28:38.4  35:43:15  89.00  Jun09 5 x 1200
UGC 7639-A  12:29:54.6  47:31:40  95.77  Jun09 2 x 1200, 1 x 600
NGC 4656-A  12:43:56.6  32:10:12 -79.80  JanlO 3 % 900
UGC 8201-A  13:06:17.4 67:42:08 120.00  Jun09 3 x 1200
UGC 8245-A  13:08:41.0 78:56:22  150.00  Jun09 3 x 1200
UGC 8508-A  13:30:44.5 54:54:24  90.09  Jun09 2 x 1200, 1x 900
UGC 8638-A  13:39:19.3 24:46:28  69.76  Jun09 3 x 1200
UGC 8638-B  13:39:20.5 24:46:33  69.76  Jun09 3 x 1200
UGC 8837-A  13:54:40.5 53:53:09 123.33  Jun09 3 x 900
NGC 5477-C  14:05:32.9  54:27:41  99.00  Jun09 3 x 900
NGC 5477-A  14:05:33.4  54:27:41  99.00  Jun09 3 x 900
UGC 9405-A  14:35:25.9 57:15:29  125.00  Jun09 4 x 1200
UGC 10818-A 17:19:41.1 61:18:31 -180.00 Jun09 3 x 900
KKH 098-A  23:45:33.5 38:43:15 -110.00 JanlO 3 x 1800

Note. — The low-luminosity LVL sample observing log. Galaxy name and H II
region label are listed in Column 1. The right ascension and declination of the
individual H II regions are given in units of hours, minutes, and seconds, and
decrees, arcminutes, and arcseconds respectively. The position angle (PA) gives
the rotation of the slit counter clockwise from North. Note that the RA and
Dec positions for “A” regions are accurate and denote the center slit placement.
However, “B” and “C” regions only have estimated RA and Dec positions, as these
are just extra extractions along the same slit that is aligned through “A”.
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Table 5. Error Weighted Average Abundances

Galaxy “Select” 12 + log(O/H) [O 111} /[O 11] log(N/O) Previous Literature
Sample? (dex) (dex) Abundances?
UGC 521 7.67£0.05 2.29£0.06 -1.61£0.07 D: 12, 13
UGC 695 7.691+0.12 0.50£0.01 -1.49£0.04
UGC 1056 7.97+0.06 0.91£0.02 -1.49+£0.02
UGC 1176 7.97+0.05 1.59+0.05 -1.4040.02
NGC 784 v 7.97+0.06 1.47+0.04 -1.54+£0.10 S: 2,6
UGC 2716 7.97£0.05 2.05+0.06 -1.4740.02
NGC 2537 8.14+0.13 0.63£0.02 -1.04£0.04 S: 2, 21-23
UGC 4278 7.691+0.05 1.084+0.02 -1.60£0.03 D: 16, 17
NGC 2552 8.15+0.05 1.2840.04 -1.16£0.02 S: 2,17, 18
UGC 4393 8.02+0.05 0.59£0.01 -1.15£0.08 D: 16
UGC 5139 4 7.92+0.05 1.95+0.06 -1.5640.05 D:5,8
1C 559 8.07£0.10 0.9040.03 -1.4740.05
UGC 5272 7.87+0.05 4.66£0.13 -1.59£0.02 D: 6, 10, 11
UGC 5340 7.20£0.05 3.26£0.13 -1.6040.08 D:6,7
UGC 5423 7.78+0.05 1.774+0.03 -1.334+0.04 D: 2,5
UGC 5797 7.96+0.06 3.48+0.10 -1.3540.06
UGC 5923 7.79£0.14 0.6140.02 -1.3040.04 S: 9
NGC 3738 Vv 8.04+0.05 1.02+0.03 -1.34£0.02 D: 2, 18-20
NGC 3741 4 7.68+0.05 1.78+0.05 -1.6140.03 S:2,3
UGC 6817 4 7.53+0.05 3.07£0.10 -1.5340.03
NGC 4163 v 7.561+0.14 0.15£0.01 -1.49+0.06 S: 2
CGCG 269-049 4 7.47£0.05 1.13+£0.03 -1.57£0.03 D:1
UGC 7577 v 7.97+0.06 3.18+0.09 -1.37£0.04
NGC 4449 v 8.26+0.09 0.86£0.02 -1.36£0.02  D: 17, 19, 20, 24-26
UGC 7605 4 7.66£0.11 1.2240.04 -1.54+£0.10
NGC 4656 8.09+0.05 8.39+0.35 -1.66£0.14 S: 2,27
UGC 8201 4 7.80£0.06 1.82+0.05 -1.7740.07 S: 8
UGC 8508 v 7.76+0.07 2.21£0.06 -1.6040.07 S: 2,4
UGC 8638 V4 7.951+0.05 2.36+0.05 -1.53£0.03
UGC 8837 7.87+0.07 0.36+0.01 -1.4340.03 D:15
NGC 5477 7.95+0.02 0.54£0.01 -1.56£0.02 D: 14

Note. — For the 10 objects with multiple H II regions containing strong [0 IH] 4363, error weighted
averages were used to determine best estimates of relative abundances and oxygen abundances. Column
(2) highlights our “Select” sample. Columns (3) - (5) lists the the new “direct” oxygen abundances,
ionization strengths, and nitrogen abundances relative to oxygen determined by this work. Average
values were determined using a weight of 1/ 0’? for each component, where uncertainties represent the
standard deviation of the weighted mean or the weighted dispersion, which ever is greater. Column (6)
shows which objects have previous oxygen abundance determinations in the literature, where ‘D’ is noted
for objects with “direct” oxygen abundances, while ‘S’ indicates objects with strong-line abundances.
Note that we are providing “direct” oxygen abundances for the first time for 19 of these objects.

References. — (1) Kniazev et al. (2003); (2) Moustakas & Kennicutt (2006); (3) Gallagher & Hunter
(1989); (4) vaduvescu et al. (2007); (5) Miller & Hodge (1996); (6) Hunter & Gallagher (1985); (7)
Pustilnik et al. (2005); (8) Croxall et al. (2009); (9) Kewley et al. (2005); (10) Kinman & Hintzen (1981);
(11) Hopp & Schulte-Ladbeck (1991); (12) van Zee et al. (1997a); (13) van Zee et al. (1997b); (14) Izotov
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et al. (2007b); (15) Liang et al. (2007); (16) Kniazev et al. (2004); (17) Izotov et al. (2006); (18) Hunter,
D. A., & Hoffman, L. (1999); (19) Hunter et al. (1982); (20) Martin, C. L. (1997); (21) Engelbracht et
al. (2008); (22) Gil de Paz, A. et al. (2000b); (23) Gil de Paz et al. (2000a); (24) McCall et al. (1985);
(25) Kobulnicky et al. (1999); (26) Sabbadin et al. (1984); (27) Matteucci, F., & Tosi, M. (1985)
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Table 7. Abundances for Additional “Select” Galaxies

Galaxy 12 + log(O/H) log(N/O) Reference
(dex) (dex)

WLM 7.83£0.06 -1.49£0.01 1
NGC 55 8.05+£0.10 -1.26+0.05 2
UGC 00668 7.62£0.05 -1.51£0.10 3
NGC 1705 8.2140.05 -1.75£0.06 4
NGC 2366 7.91+0.05 -1.17+0.26 5
UGC 4305 7.92£0.10 -1.52+0.11 6
UGC 4459 7.82£0.09 -1.32£0.17 7
Leo A 7.30+0.05 -1.53£0.09 8
Sex B 7.53£0.05 -1.49+0.06 9
Sex A 7.54+0.06 -1.54+0.13 10
UGC 5666 7.93£0.05 -1.45£0.08 7
NGC 4214 8.22£0.05 -1.32£0.03 11
UGC 8091 7.65+0.06 -1.51+0.07 8
IC 5152 7.92£0.07 -1.05£0.12 6
SMC 7.96+0.15 -1.55£0.15 12
UGC 00685 8.0040.03 -1.45£0.08 13
NGC 625 8.0840.12 -1.25£0.03 14
LMC 8.26£0.15 -1.30+0.20 12
UGC 4483 7.56£0.03 -1.57£0.07 13
UGC 6541 7.82£0.06 -1.45£0.13 15
UGCA 292 7.30+0.03 -1.45+0.07 9
UGC 8651 7.85+0.04 -1.60=£0.09 13
UGC 9128 7.75+0.05 -1.80+0.12 16
UGC 9240 7.95£0.03 -1.60£0.06 13
UGCA 442 7.72+0.03 -1.41+0.02 14

Note. — The top portion of the table lists the objects and
their abundances which were included in the L06 sample. The
bottom half lists additional objects found in the literature. All
objects meet the “Select” sample criteria.

References. — (1) Lee et al. (2005); (2) Tiillmann et al.
(2003); (3) Lee et al. (2003a); (4) Lee & Skillman (2004); (5)
Saviane et al. (2008); (6) Lee et al. (2003b); (7) Croxall et al.
(2009); (8) van Zee et al. (2006); (9) van Zee, L. (2000); (10)
Kniazev et al. (2005); (11) Kobulnicky & Skillman (1996);
(12) Russell, S. C. & Dopita, M. A. (1990); (13) van Zee &
Haynes (2006); (14) Skillman et al. (2003) (15) Thuan, T. X.,
& Izotov, Y. I. (2005); (16) van Zee et al. (1997b);
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Strong-Line Oxygen Abundances for Our “Direct” Detection Galaxies

12 + log(O/H)

Galaxy INII)/[0 IT] Ras ONS N2  O3N2
UGC 521 A 0.03 790 (L) 7.65(3) 7.87 8.14
UGC 695 E 0.04 801 (L) 7.93(3) 813 834
UGC 1056 A 0.04 8.08 (L) 8.03(3) 8.15 8.29
UGC 1176 A 0.05 8.03 (L) 7.90(3) 8.04 8.18
NGC 784 A 0.05 8.08 (L) 7.95(3) 8.02 8.15
UGC 2716 A 0.04 8.08 (L) 7.93(3) 7.99 8.15
NGC 2537 A 0.14 858 (U) 841 (2) 827 829
UGC 4278 A 0.03 778 (L) 7.64 (3) 7.88 8.19
NGC 2552 A 0.10 798 (L) 8.06 (3) 8.12 8.20
UGC 4393 B 0.12 8.56 (U) 8.31(2) 816  8.19
UGC 5139 A 0.04 797 (L) 7.78 (3) 7.94 8.16

IC 559 A 0.05 8.09 (L) 8.02(3) 8.14 8.26
UGC 5272 A 0.03 795 (L) 7.71(3) 7.73 8.04
UGC 5340 A 0.03 7.34 (L) 7.15(3) 7.51 8.09
UGC 5423 A 0.06 799 (L) 7.97(3) 802 817
UGC 5797 A 0.06 8.13 (L) 8.02(3) 7.92 8.07
UGC 5923 A 0.06 8.20 (L) 8.23(2) 8.26 8.31
NGC 3738 A 0.07 8.07 (L) 8.05(3) 8.15 8.24
NGC 3741 A 0.03 7.81 (L) 7.64(3) 7.87 8.17
UGC 6817 A 0.03 764 (L) 7.45(3) 7.69 8.10
NGC 4163 A 0.03 8.07 (L) 7.55(3) 8.18 8.52

CGCG 269-049 A 0.03 7.60 (L) 7.65(3) 7.72 8.05
UGC 7577 A 0.05 812 (L) 8.07(3) 794 797
NGC 4449 A 0.07 8.04 (L) 8.19(2) 8.08 8.19
UGC 7605 A 0.03 7.81 (L) 7.66 (3) 7.94 8.22
NGC 4656 A 0.03 8.10 (L) 7.81(3) 7.62 7.96
UGC 8201 A 0.02 7.82 (L) 7.55(3) 7.85 8.17
UGC 8508 A 0.03 783 (L) 7.62(3) 7.85 8.14
UGC 8638 A 0.04 8.01 (L) 7.82(3) 7.93 8.13
UGC 8837 A 0.06 8.02 (L) 7.92(3) 8.20 8.38
NGC 5477 A 0.04 797 (L) 7.72(3) 7.81 8.08

Offset e 0.14 -0.001 0.12 0.32
Dispersion s 0.22 0.17 0.24 0.42
Note. — Strong-line abundances are calculated for the 31 objects with spec-

tra containing an [O III] A4363 signal-to-noise of 4 or greater. Four strong-line
calibrations are given: 1) The Rz method of McGaugh (1991) is listed in col-
umn (3), where the appropriate branch was selected based on the [N II]/[O II]
ratio given in column (2), with [N II]/[O II]~ 0.1 drawing the division. Branch
selection is denoted by (L) for lower branch and (U) for upper branch. 2) The
ONS calibration of Pilyugin et al. (2010) is given in column (4). Pilyugin et
al. (2010) divides their calibration into 3 classes of H II regions, where we
have used (1) for regions with log (N2) > —0.1, (2) for log (N2) < —0.1 and
log (N2/S2) > —0.25, and (3) for log (N2) < —0.1 and log (N2/S2) < —0.25.
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3) The N2 calibration, corrected for N/O ratio variations by PMCO09, is given
in column (5). 4) The O3N2 calibration, also corrected for N/O ratio varia-
tions by PMCO09, is given in column (6). The last two rows give the average
offset and dispersion of the strong-line abundances from their “Direct” abun-
dance counterparts.
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Table 9. Strong-Line Oxygen Abundances for [O III] A4363 Non-Detection Objects

12 + log(O/H)

Galaxy INII)/[0 I0] Ras ONS N2  O3N2
NGC 404 0.04 723 (L) 7.55(3) 8.53 8.56
KKH 037 0.06 8.32 (U) 8.33(1) 8.53 8.56

CGCG 035-007 0.05 8.00 (L) 8.10(3) 8.57 8.37
UGC 5672 0.06 8.00 (L) 8.26(3) 8.37 8.29
UGC 5692 0.15 8.40 (U) 8.08 (3) 8.53 8.31
UGC 6782 0.08 7.85 (L) e 8.18 8.27
UGC 6900 0.12 8.00 (U) 7.69(3) 8.08 8.17
UGC 7599 8.09 (U)
UGC 7639 0.05 777 (L) 7.99 (3) 8.50 8.42
UGC 8245 0.04 7.59 (L) 7.78 (3) 8.40 8.39
UGC 9405 0.11 777 (L)  8.22(3) 8.63 8.40
UGC 10818 0.09 7.82 (L) ax 8.45 8.29

KKH 098 0.04 7.61 (L) 7.66(3) 8.17 8.27

Note. — Strong-line abundances are calculated for HII regions with no

[O ITI] \4363 detections. Most objects in our sample have at least one HII
region with a “direct” abundance determination, but 12 objects have good
spectra and no [O III] A4363 measurement. Four strong-line calibrations
are given for these objects: 1) The Ra3 method of McGaugh (1991) is listed
in column (3), where the appropriate branch was selected based on the
[N I1]/[O II] ratio given in column (2). [N II]/[O II]~ 0.1 draws the branch
division. Branch selection is denoted by (L) for lower branch and (U) for
upper branch. 2) The ONS calibration of Pilyugin et al. (2010) is given in
column (4). Pilyugin et al. (2010) divides their calibration into 3 classes of
HII regions, where we have used (1) for regions with log (N2) > —0.1, (2) for
log (N2) < —0.1 and log (N2/S2) < —0.25, and (3) for log (N2/S2) > —0.25.
3) The N2 calibration, corrected for N/O ratio variations by PMCO09, is
given in column (5). 4) The O3N2 calibration, also corrected for N/O ratio
variations by PMCQ09, is given in column (6).
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Fig. 1.— Ha and R-band images of the objects in the present low-luminosity LVL sample. The
angular scale of the images is 60" x 60”with North directly up and East to the left. The line across
the images represents the slit position during observation. The brightest H II regions are labeled
with letters. See Table 1 for more details.
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Fig. 2.— Four sample spectra representative of the low-luminosity LVL sample presented in this
paper. The full spectral range of these high-quality, high signal-to-noise observations is shown. The
inset windows expand the region around the intrinsically faint [O III] A4363 line used to determine
T.. Note that the much stronger line blueward of [O III] A\363 is Hy A4340. These spectra
demonstrate the range in ionization field strength seen for this sample, ranging from low ionization

in the bottom panel (NGC 5477) to high ionization in the top panel (UGC 4656).
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Fig. 3.— On the top, the optical luminosity-metallicity relationship is plotted for the 31 objects in
the present sample with “direct” oxygen abundance measurements (squares). The solid black line
represents the least-squares fit to this data. In comparison the original L06 dashed least-squares
fit lies close to our line; in fact the slopes agree within the uncertainties. The updated L06 data
are plotted (which are slightly offset from the original fit - see §6.3 for discussion of L06 data).
On the bottom, the optical luminosity-metallicity relationship is improved by restricting our data
to a “Combined Select” sample with “direct oxygen” abundances and reliable distance estimates
(TRGB or ceph). The triangles represent the set of additional “Select” objects comprised from L0G6,
vZ06, and Marble et al. (2010), and the solid line is the least squares fit to the total “Combined
Select” sample.
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Fig. 4— In the top panel, the NIR luminosity-metallicity relationship is plotted for the 31 objects
in the present sample with “direct” oxygen abundance measurements (squares). The solid black
line represents the least-squares fit to this data. In comparison, updated L06 data are plotted
(circles), with the dashed original least-squares fit of LO6 lying just above our line. Note that
the updated data are slightly offset from the original fit (see §6.3 for discussion of L06 data). In
the bottom panel is the NIR luminosity-metallicity relationship for the “Combined Select” sample,
with “direct” oxygen abundances and reliable distance estimates (TRGB or ceph). By filtering our
data in this way, the L-Z relationship is strengthened.
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Fig. 5.— In the top panel the mass-metallicity relationship derived from NIR luminosities is plotted
for the 31 objects in the present sample with “direct” oxygen abundance measurements (squares).
The solid black line represents the least-squares fit to this data. In comparison, updated L06 data
is plotted (circles). We have also plotted the original least-squares fit to the sample of objects
from L0O6 (which is not significantly offset from the updated data; see §6.3 for discussion of L06
data). This dashed gray line is offset from our estimate of the best fit. In the lower panel is the
mass-metallicity relationship for the “Combined Select” sample, with “direct” oxygen abundances
and reliable distance estimates (TRGB or ceph).
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Fig. 6.— Relative N/O abundance is depicted. The top panel compares log(N/O) to B—V color for
objects of the present sample with [N II] observations (filled circles), the sample of vZ06 (crosses),
and for the additional “Select” galaxies (triangles). The least squares fit for this work is represented
by the dotted line. The dashed line is the least squares fit from vZ06. A solid line is shown for
the literature combination of all three data sets: the present work, vZ06, and the additional values
from the literature; our best estimate of the true relationship for the color range of 0.05 < B—V <
0.75. Below B —V = 0.20 the data diverges from the fit, suggesting this fit is most appropriate for
the range of 0.20 < B—V < 0.75. The bottom panel displays log(N/O) versus log(O/H) for objects
from this work, vZ06, and additional literature values. At values of 12 + log(O/H) < 7.7, the N/O
values are relatively constant, consistent with the plateau associated with primary nitrogen return.
Above this value of O/H, the scatter increases and the trend is to larger values of N/O with the
addition of secondary nitrogen.
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Fig. 7.— We plot the difference in oxygen abundances determined via the “direct” method and

strong-line methods versus the “direct” method oxygen abundances for the objects listed in Table 5.

The open circles display the comparison for strong-line abundances determined via the Rog method
of McGaugh (1991) and the closed circles the ONS calibration of (Pilyugin et al. 2010). The absence
of clear trends imply that simple calibrations between methods are not possible.
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Fig. 8.— The strong-line ONS mass-metallicity relationship is depicted for all the objects for which
we calculated strong-line abundances (see Appendix A). The objects are plotted in comparison to
“direct” abundances determined for the “Combined Select” sample. As a reference, we have plotted
Equation 14, our M-Z relationship for the “Combined Select” sample, as a solid line. While scatter
is apparent, the overall trend is well defined and the two sample coincide. Note that in terms of
scatter the“direct” method is an improvement over the ONS strong-line calibration.
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