Skip to main content
Optofluidic cell manipulation for a biological microbeam
Review of Scientific Instruments
  • Michael Grad, Columbia University
  • Alan W. Bigelow, Columbia University
  • Guy Garty, Columbia University
  • Daniel Attinger, Iowa State University
  • David J. Brenner, Columbia University
Document Type
Publication Date
This paper describes the fabrication and integration of light-induced dielectrophoresis for cellular manipulation in biological microbeams. An optoelectronic tweezers (OET) cellular manipulation platform was designed, fabricated, and tested at Columbia University's Radiological Research Accelerator Facility (RARAF). The platform involves a light induced dielectrophoretic surface and a microfluidic chamber with channels for easy input and output of cells. The electrical conductivity of the particle-laden medium was optimized to maximize the dielectrophoretic force. To experimentally validate the operation of the OET device, we demonstrate UV-microspot irradiation of cells containing green fluorescent protein (GFP) tagged DNA single-strand break repair protein, targeted in suspension. We demonstrate the optofluidic control of single cells and groups of cells before, during, and after irradiation. The integration of optofluidic cellular manipulation into a biological microbeam enhances the facility's ability to handle non-adherent cells such as lymphocytes. To the best of our knowledge, this is the first time that OET cell handling is successfully implemented in a biological microbeam.

The following article appeared in Review of Scientific Instruments 84, 014301 (2013); 1 and may be found at doi:10.1063/1.4774043.

Copyright 2013 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Copyright Owner
American Institute of Physics
File Format
Citation Information
Michael Grad, Alan W. Bigelow, Guy Garty, Daniel Attinger, et al.. "Optofluidic cell manipulation for a biological microbeam" Review of Scientific Instruments Vol. 84 Iss. 014301 (2013) p. 014301-1 - 014301-7
Available at: