Skip to main content
Article
H-infinity Estimation for Fuzzy Membership Function Optimization
International Journal of Approximate Reasoning
  • Daniel J. Simon, Cleveland State University
Document Type
Article
Publication Date
11-1-2005
Disciplines
Abstract

Given a fuzzy logic system, how can we determine the membership functions that will result in the best performance? If we constrain the membership functions to a specific shape (e.g., triangles or trapezoids) then each membership function can be parameterized by a few variables and the membership optimization problem can be reduced to a parameter optimization problem. The parameter optimization problem can then be formulated as a nonlinear filtering problem. In this paper we solve the nonlinear filtering problem using H∞ state estimation theory. However, the membership functions that result from this approach are not (in general) sum normal. That is, the membership function values do not add up to one at each point in the domain. We therefore modify the H∞ filter with the addition of state constraints so that the resulting membership functions are sum normal. Sum normality may be desirable not only for its intuitive appeal but also for computational reasons in the real time implementation of fuzzy logic systems. The methods proposed in this paper are illustrated on a fuzzy automotive cruise controller and compared to Kalman filtering based optimization.

DOI
10.1016/j.ijar.2005.04.002
Version
Postprint
Citation Information
Simon, D. (2005). H-Infinity Estimation for Fuzzy Membership Function Optimization. International Journal of Approximate Reasoning, 40(3), 224-242. doi:10.1016/j.ijar.2005.04.002