Skip to main content
Kalman Filtering with State Constraints: a Survey of Linear and Nonlinear Algorithms
IET Control Theory and Applications
  • Daniel J. Simon, Cleveland State University
Document Type
Publication Date

The Kalman filter is the minimum-variance state estimator for linear dynamic systems with Gaussian noise. Even if the noise is non-Gaussian, the Kalman filter is the best linear estimator. For nonlinear systems it is not possible, in general, to derive the optimal state estimator in closed form, but various modifications of the Kalman filter can be used to estimate the state. These modifications include the extended Kalman filter, the unscented Kalman filter, and the particle filter. Although the Kalman filter and its modifications are powerful tools for state estimation, we might have information about a system that the Kalman filter does not incorporate. For example, we may know that the states satisfy equality or inequality constraints. In this case we can modify the Kalman filter to exploit this additional information and get better filtering performance than the Kalman filter provides. This paper provides an overview of various ways to incorporate state constraints in the Kalman filter and its nonlinear modifications. If both the system and state constraints are linear, then all of these different approaches result in the same state estimate, which is the optimal constrained linear state estimate. If either the system or constraints are nonlinear, then constrained filtering is, in general, not optimal, and different approaches give different results.

Citation Information
Daniel J. Simon. "Kalman Filtering with State Constraints: a Survey of Linear and Nonlinear Algorithms" IET Control Theory and Applications Vol. 4 Iss. 8 (2010) p. 1303 - 1318
Available at: