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SIMPLIFIED KINEMATIC WAVES AT A DIVERGE 

By Daiheng Ni1 and John D. Leonard II23 

 

Abstract: Queuing at a diverge is an interesting but sophisticated phenomenon where one stream of traffic 

is split into two or more. It is generally not a problem when downstream supplies are sufficient to 

accommodate upstream demand. If, however, the demand does exceed the supplies, congestion will back 

onto upstream link and constrain traffic there. This paper, based on analyzing diverging behavior, reviews 

the existing models and proposes a contribution-based weighted splitting (CBWS) diverge model that takes 

into consideration queuing from different diverging branches. Based on this, Newell’s simplified theory of 

kinematic waves is extended to incorporate diverges.  

 

Key Words: Traffic simulation, macroscopic traffic model, kinematic waves, simplified theory, queuing, 

diverge. 

 

 

INTRODUCTION 

At the core of ITS (Intelligent Transportation Systems) are Advanced Traffic Management System 

(ATMS), which is intended to improve operational control and reduce congestion, and Advanced Traveler 

Information System (ATIS), which helps driving easier and more efficient. In both systems, traffic 

engineers rely heavily on traffic models to develop traffic control strategies, compare incident recovery 

alternatives, devise ramp metering rates, and publish traveler-related information. Macroscopic traffic 

models are well-suited to serve these purposes due to its efficiency in describing traffic evolution in a large 

roadway network. The so-called LWR model (Lighthill and Whitham, 1955; Richards 1956) is such a 
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model based on vehicle conservation in time-space domain and some functional relationship between 

traffic flow and density. Because the LWR model is typically difficult to solve, Newell further simplified 

the kinematic model based on some assumptions and the resulting simplified theory of kinematic waves 

(Newell 1993a, b, c) is easy to handle either graphically or numerically. Unfortunately, the simplified 

theory deals only with freeway mainline, which greatly limits its application, especially when the 

performance of a regional network is of interest. As part of the effort to extend Newell’s simplified theory, 

kinematic waves at a diverge is the focus of this paper. 

Several diverge models are identified and analyzed in this paper, but no intention is made to criticize 

any of these models since they work fine under this or that circumstances.  The purpose of this paper is to 

propose a sound and efficient diverge model based on analysis of diverging behavior that is suited to extend 

the simplified theory of kinematic waves. 

 

REVIEW OF EXISTING WORK ON DIVERGES 

A diverge comes into play because it links two or more downstream routes that are possibly interact at 

their common upstream link. Very often, one is faced with splitting traffic between the diverging branches 

and a demand-supply framework is typically used to explain queuing at a diverge.  

In his simplified theory, Newell (1993a, b, c) assumed unlimited supply on exits, so there is 

essentially no congestion from off-ramps. If, however, vehicles are prevented from departing at a diverge 

either because of insufficient capacity at the diverge point or congestion from downstream mainline, 

Newell assumed that all vehicles upstream will be affected regardless of their destinations, i.e., traffic state 

(e.g., speed, flow, density, etc.) is uniform over all lanes at the upstream link. This diverge model serves as 

one of the underlying assumptions based on which the simplified theory of kinematic waves is formulated.  

In one of his later papers as an attempt to estimate delays caused by an off-ramp queue, Newell (1999) 

slightly relaxed the above assumption and tended to believe that queues from different diverging branches 

need to be treated separately. This implies that traffic states can be different for traffic bound for different 

destinations. However, to be consistent with his original theory and avoid going into the detail of lane-by-

lane difference, Newell limited the differences in the vicinity of the diverge by assuming vertical queues. If, 

however, one feels that a vertical queue might over-simplify things and a physical queue makes more 



sense, there will be a problem of dealing with more than one queue and hence more than one traffic state on 

a link, which is typically not captured in most macroscopic traffic models. 

Daganzo (1995) proposes a diverge model similar to Newell's first model but with finite supply at an 

off-ramp. The model assumes that, if either diverging branch is blocked, all upstream traffic will be 

restricted regardless of destination. In his another paper regarding generalized theory of kinematic waves 

(Daganzo 1997), Daganzo proposes a second diverge model to deal with freeways with special lanes. This 

model assumes two vehicle types and three traffic regimes such that, upstream of a diverge, there are "two 

pipes" carrying two sets of fluids with different speeds and, further upstream, there is "one pipe" carrying 

the mixed fluid with uniform speed. This is a closer approximation of the reality at the cost of allowing 

more than one traffic state on a link concurrently. 

Lebacque (1996) proposes two diverge models. The first one determines the upstream demand and 

then divides it among the diverging branches based on turning proportions. This mode is basically the same 

as Daganzo's first model, i.e., if one of the diverging branches is unable to provide any supply, no vehicle 

can depart at the upstream link. The second model determines the supplies at the diverging branches and 

sums them up to get the upstream departure. This model implies that, if there is congestion from one of the 

diverging branches, a hypothetical storage is needed to store the vehicles that are unable to depart while 

traffic on other lanes are not affected. It also implies that traffic state on different lanes may not be the 

same, though the lane-by-lane difference is not explicitly modeled. 

In summary, there are generally two modeling strategies at a diverge: one that allows multiple 

concurrent traffic states on the upstream link and the other that doesn't. The former treats queues from 

different diverging branches separately and a queue only affects its corresponding part of upstream traffic. 

However, this strategy may involve lane-by-lane difference and is hard to capture at a macroscopic level. 

This is probably part of the reason why Newell assumes vertical queue and Lebacque assumes hypothetical 

storage. The latter spreads downstream congestion over all lanes of the upstream link and all traffic there 

will be affected regardless of destination. This is relatively cheap to model but at some cost of realism. In 

this paper, we are going to extend the simplified theory of kinematic waves to model queuing at a diverge, 

which takes advantages of the above seemingly competing strategies such that the former is used to split 

flow and move traffic forward at a diverge and the latter is used to update traffic state for each link. 



 

ANALYSIS OF DIVERGING BEHAVIOR 

Figure 1 shows a sketch of a diverge. There are two types of vehicles, type 1 vehicles which are 

destined for the left branch (branch 1) of the diverge and type 2 vehicles which are destined for the right 

branch (branch 2) of the diverge. Our discussion here addresses a generic case that incorporates or can be 

extended to off-ramps, diverging highways or freeways, as well as intersections. 

Before any queue backs up from downstream of the diverge, let's assume that traffic upstream is 

operating in the free-flow regime and traffic state is pretty uniform over all lanes. Though lane variation 

exists, this is neither the main focus of nor typically captured at a macroscopic level. Under this 

assumption, there are some 1-vehicles traveling on the right lanes and some 2 vehicles traveling on the left 

lanes and these drivers have the piece in mind that they are able to change to their desired lanes whenever 

needed. When a queue backs up from downstream, it can originate from branch 1 or 2 or both. Let's assume 

it comes from branch 2 and base our following discussion on this assumption. The same discussion also 

applies to branch 2. Several pictures are proposed to model queuing at the diverge.  

One picture is illustrated in Figure 2 where the 2-vehicle queue dictates the overall traffic condition 

upstream. This is the diverge model assumed in Newell (1993a, b, c) and in Daganzo (1995) and also the 

first diverge model proposed by Lebacque (1996). As the 2-vehicle queue backs up, all vehicles upstream 

will be affected and delay is experienced by all vehicles regardless of their destinations. This model is more 

appropriate if one is willing to model traffic at a higher level and achieves efficiency at cost of some 

realism. This model also makes more sense if the upstream link has only one lane or the majority of the 

road users are tourists often characterized as alert, courteous, and curious. However, this model might not 

be realistic when the upstream link has multiple lanes, especially when the road users are predominated 

daily commuters, a case that is often seen in urban freeways.  

Another picture is proposed by Newell (1996) where the queue is assumed vertical and confined 

somewhere near the diverge at the side of branch 2. Upstream of the 2-vehicle queue, there could be 

another queue mainly formed by 1-vehicles if their arrival rate is higher than the capacity of the left lanes. 

Further upstream of the 1-vehicle queue, traffic states tend to be uniform over all lanes. This model is 

proposed primarily for evaluating delays caused by congestion at an off-ramp and the model applies to 



isolated exits without interaction with further upstream and downstream links, features that render the 

model unsuitable for extending the simplified theory of kinematic waves to corridor/network application. 

Despite of this, Newell did imply that queues from different branches need to be treated differently, which 

is the idea that this paper is in favor of. 

Figure 3 probably gives a more realistic representation of queuing at a diverge. As 2-vehicle queue 

backs onto the upstream link, traffic at branch 2 is dictated by the queue and, hence, exhibits a high density. 

Slightly upstream of the queue, i.e., the area on the right lanes near the diverge, traffic state is almost the 

same as that of branch 2 because the former is a nature extension of the latter. Also the difference of traffic 

states between the right lanes and the left lanes becomes sharper as one gets closer to the diverge. This is 

especially true when origin-destination flow is predetermined and route choice is absent, as most 

macroscopic model does. Several reasons help to maintain the 2-vehicle queue on the right lanes. First, 

most 1-vehicles, noticing that the 2-vheicle queue is building up, tend to change to the left lanes because 

they are not intended to exit via branch 2 and because traffic is traveling at higher speeds on the left lanes. 

Second, those who are bound to exit via branch 2 have to stay in the queue even though the adjacent lanes 

exhibit higher speeds. Third, given the short distance and the high speed difference, queued vehicles who 

are close to the diverge may not be able to change to the left lanes even though they want to divert. 

However, the difference in traffic states between the left lanes and the right lanes diminishes as one goes 

further upstream due to a transition from congested to uncongested condition on the right lanes. Traffic 

density in the transition area is lower then that of the congested area, but higher than the uncongested area. 

Still in this area, downstream congestion becomes foreseeable and vehicles bound for different destinations 

begin to consider changing lanes with 2-vehicles changing to or staying at the right lanes even though they 

can travel faster at adjacent lanes. Though there are some 2-vehicles who bypass the queue and squeeze in 

at the head of the queue at the expense of others' delay, these vehicles are relatively few and the relatively 

high speed difference near the diverge may not be favorable for them to sneak in. This and other 

phenomena such 1-vehicle's squeezing out from right lanes can be modeled by a friction at the interface 

between the left and right lanes. This friction, in turn, acts as a variable constraint on effective capacity 

based on current traffic state (e.g., density). Upstream of the transition area, traffic is free-flowing (or 



nearly so), and downstream congestion has not been perceived by travelers here, so traffic tends to be 

distributed uniformly over all lanes. 

Technically, it is difficult to model transition of traffic state at a macroscopic level, and this is where a 

shock wave is introduced to describe the discontinuity of traffic states. Figure 4 can be approximated by the 

Figure 5, in which there is an abrupt change of traffic state between branch 2 and the right lanes. This 

happens to be the second diverge model proposed by Lebacque (1996). 

Considering that queue tail might be located somewhere on the right lanes, the right lanes might 

contain a congested section and a uncongested section. On the other hand, there might be vehicles 

exchanging between the left and the right lanes and this acts as a friction at the interface. Given these, a 

closer approximation of Figure 4 can be the one illustrated in Figure 6 where there is a discrete changeover 

from congested to uncongested condition and a traffic state-based variable capacity near the diverge. If 

there is a concurrent queue from branch 1, the same treatment applies and there is another discrete 

changeover on the left lanes, and this picture happens to be the second diverge model proposed by 

Daganzo, i.e., the one with two vehicle types and three traffic states. 

Figure 6 depicts the contribution-based weighted splitting (CBWS) diverge model based on which the 

simplified theory of kinematic waves is going to be extended. As stated before, we are trying to mix the 

two modeling strategies and taking the best out of them. More specifically, we are going to split flow and 

move traffic forward based on the strategy of multiple traffic states, while we update link traffic state based 

on the strategy of single traffic state. The simplified kinematic waves at a diverge works as follows. First, 

the departure counts of the two diverging branches are evaluated individually. Second, their sum is used as 

one of the constraints to evaluate the aggregate departure count to the left of the diverge. Also, this is the 

place where the friction comes into play. A traffic state-based friction factor is applied to the capacity 

which is also one of the constraints to the aggregate departure count. The resulting aggregate departure 

count may not exactly be the sum of the departure counts of the two branches determined earlier, so a 

splitting scheme based on downstream contributions is used to determine the actually downstream 

departure counts. Queues from different branches are treated separately such that travel times of vehicles in 

these queues are evaluated individually and the travel times are then used to advance multiple-destination 

flows. 



Of course, one would arguably say that treating different queues separately violates the FIFO (first-in-

first-out) assumption of a queuing system. This is not necessarily the case because FIFO still holds if the 

two queues from the two diverging branches are evaluated individually. On the other hand, vehicles for 

different destinations will operate independently once they have past the diverge and FIFO lost its meaning 

for them.  

 

SIMPLIFIED THEORY OF KINEMATIC WAVES AT A DIVERGE 

We consider here a diverge as shown in Figure 7. The upstream link is ),( li xx and the two diverging 

branches are ),( nl xx and ),( ml xx . rx denotes any downstream destination of lx via nx  and sx denotes any 

downstream destination of lx via mx . ),(, txA lni
− denotes the cumulative number of vehicles waiting 

somewhere to the left of lx at time t originated from node ix destined for node nx and beyond at time t . 

),(, txD lni
+ denotes the cumulative number of vehicles past the right of lx at time t originated from node 

ix destined for node nx and beyond at time t . ilililililil ulnvkQ ,,,,, denote the capacity, jam density, 

forward wave speed, number of lanes, length, and backward wave speed of link ),( li xx . The meaning of 

the above notations applies to similar symbols. 

The simplified theory of kinematic waves starts from boundary conditions and works on lattice points 

in a time-location domain such that, at each time step, all nodes are evaluated from the first to the last and 

then time advances to the next step. Suppose, from boundary conditions and previous time steps, we know 

the cumulative departure curves to the right of ix originated from ix  destined for all destinations 

zx ( .,,,,, etcsrnmlz = ) up to time t , ),(, txD izi
+ . Suppose also that geometry data and traffic 

characteristics data are well defined for each link. Our goal here is to determine the cumulative departure 

curves past lx destined for all destinations. This can be done by a 5-step procedure based on Newell's 

simplified theory of kinematic waves. 

 

A. Departure to the right 



There are two links to the right of lx , ),( nl xx  and ),( ml xx , so cumulative departure curves 

),(, txD lnl
+  and ),(, txD lml

+  are evaluated individually. According to Newell, the cumulative departure 

curve to the right of lx  originated from lx destined for nx  and beyond, ),(, txD lnl
+ , is constrained by the 

following: 

 

a. Upstream arrival 

)/,(),(),( ,,, ililinilnilnl vltxDtxAtxA −== +−+  

 

b. Right capacity 

ln, ),( QtxD lnl ×+−+ ττ  

 

c. Downstream queue 

lnlnlnln, )/,( klultxD nnl ×+−−  

 

d. Left capacity 

There is a problem here. Usually the capacity to the left of lx  is enough to handle traffic destined for 

nx  and beyond. However, this capacity is, at the same time, shared by traffic destined for mx  and beyond. 

The question is, how much of the capacity can be utilized by the former? It is hard to answer at this point 

and let's leave it for a second. For now, ),(, txD lnl
+  is simply the minimum of a, b, and c, i.e., 

{ }lnlnlnln,ln,,, )/,(,),(),,(min),( klultxDQtxDtxAtxD nnllnllnllnl ×+−×+−= −+++ ττ  

Similarly, we can obtain the cumulative departure curve to the right of lx  originated from lx destined 

for mx  and beyond, ),(, txD lml
+ : 

{ }lmlmlmlmmmllmlmllmllml klultxDQtxDtxAtxD ×+−×+−= −+++ )/,(,),(),,(min),( ,,,, ττ  

 



B. Departure to the left 

The cumulative departure curve to the left of lx  originated from ix  destined for lx  and 

beyond, ),(, txD lli
− , is simply the minimum of: 

 

a. Upstream arrival 

)/,(),( ,, ililililli vltxDtxA −= +−  

 

b. Left capacity 

illli QtxD ×+−− ττ ),(,  

 

c. Downstream departure 

),(),( ,, txDtxD lmllnl
++ +  

Notice that the destination of ),(, txD lli
− is lx , not nx  or mx . We are considering the aggregate flow 

at link ),( li xx . As mentioned before, the use of the lanes near the diverge may not be balanced, i.e., 2-

vehicles may stay at the right lanes and 1-vehicles may use all lanes though left lanes are usually preferred. 

Also, there might be vehicle exchange between left and right lanes and this is modeled as a friction which 

is a function of traffic state (e.g. traffic density). The effect of the friction on traffic operation can be 

reflected by reducing capacity accordingly. Let ),( tfil φ denotes the friction factor of link ),( li xx at time 

t  and φ is the current traffic state. ),( tfil φ is usually not known and has to be treated as a design 

parameter. The effective capacity is then )),(1(' tfQQ ililil φ−= , and the capacity constraint 

becomes '),(, illli QtxD ×+−− ττ . Therefore,  

{ }),(),(,'),(),,(min),( ,,,,, txDtxDQtxDtxAtxD lmllnlilllillilli
++−−− +×+−= ττ  



Notice that, as the friction factor approaches 0, our proposed technique reduces to Lebacque's second 

model. In response to the problem of left capacity in A, this step guarantees that the cumulative departure 

destined for lx  (i.e., the sum of those destined for nx  and mx ) won’t exceed the capacity to the left of lx . 

Now, a new problem arises. Of the amount ),(, txD lli
− determined above, how much is destined for 

nx , i.e. ),(, txD lni
− , and how much is destined for mx , i.e., ),(, txD lmi

− ? They might be the same as 

),(, txD lnl
+  and ),(, txD lml

+ , respectively, if ),(, txD lli
−  is determined by downstream departures. 

However, when ),(, txD lli
−  is determined by upstream arrival or left capacity, ),(, txD lni

−  and 

),(, txD lmi
−  may not be the same as ),(, txD lnl

+  and ),(, txD lml
+ , respectively. In either case, 

),(, txD lli
−  is split between ),(, txD lni

− and ),(, txD lmi
−  based on their respective downstream 

contributions, which explains how the proposed contribution-based weighted splitting (CBWS) diverge 

model gains its name. Let:  

),(),(),( ,,, τ−−= +++ txDtxDtxd lnllnllnl  

),(),(),( ,,, τ−−= +++ txDtxDtxd lmllmllml  

),(),(),( ,,, τ−−= −−− txDtxDtxd llillilli  

Then 

),(),(
),(

),(),(
,,

,
,, txdtxd

txd
txdtxd

lmllnl

lnl
llilni ++

+
−−

+
×=

 

),(),(),( ,,, txdtxDtxD lnilnilni
−−− +−= τ

 

),(),(
),(

),(),(
,,

,
,, txdtxd

txd
txdtxd

lmllnl

lml
llilmi ++

+
−−

+
×=

 

),(),(),( ,,, txdtxDtxD lmilmilmi
−−− +−= τ

 

If 0),(),( ,, =+ ++ txdtxd lmllnl , no traffic discharges for either downstream link, i.e., 

0),(, =− txd lni and 0),(, =− txd lmi . 



 

C. Link travel time 

At pervious step, we determined the cumulative departure curves based on aggregate flow for the 

upstream link. At this step, we evaluate the queues for the two diverging branches individually. This is 

done by computing link travel time for vehicles destined for each diverging branch. 

Travel time for 1-vehicles at link ),( li xx can be obtained by comparing curve pair ),(, txD ini
+ vs. 

),(, txD lni
−  as follows. We trace ),(, txD ini

+ backwards until some prior time 't  such that 

)',(, txD ini
+ is equal to ),(, txD lni

− . Then the link travel time for 1-vehicles is )(tT n
il = 'tt − , where the 

superscript denotes the branch having nx . 

Similarly, travel time for 2-vehices at link ),( li xx , )(tT m
il , can be obtained by curve 

pair ),(, txD imi
+ vs. ),(, txD lmi

− . 

 

D. Departure to the left – multi-destinations 

With link travel time )(tT n
il  obtained above, the cumulative departure curve to the left of lx  

originated from ix  destined for rx  and beyond, ),(, txD lri
− , is determined as 

))(,(),( ,, tTtxDtxD n
ilirilri −= +−  

Similarly, the cumulative departure curve to the left of lx  originated from ix  destined for sx  and 

beyond, ),(, txD lsi
−  is determined as 

))(,(),( ,, tTtxDtxD m
ilisilsi −= +−  

 

E. Departure to the right – multi-destinations 

Since this is a diverging scenario, no traffic enters from any on-ramp. The cumulative departure curve 

to the right of lx  originated from ix  destined for nx  and beyond, ),(, txD lni
+  is the same as ),(, txD lni

− , 



and the cumulative departure curve to the right of lx  originated from ix  destined for mx  and beyond, 

),(, txD lmi
+  is the same as ),(, txD lmi

− , i.e., 

),(),( ,, txDtxD lnilni
−+ =  

),(),( ,, txDtxD lmilmi
−+ =  

Notice that, at step A, we have preliminarily determined ),(, txD lnl
+  and ),(, txD lml

+ , which are the 

equivalent of ),(, txD lni
+ and ),(, txD lmi

+ , respectively. As the procedure goes on, those preliminary 

values are fine-tuned and updated. 

Similarly, for other destinations rx sx , we have: 

),(),( ,, txDtxD lrilri
−+ =

 

),(),( ,, txDtxD lsilsi
−+ =

 

So far we have extended Newell’s simplified theory of kinematic waves to accommodate queuing at a 

diverge. With the cumulative departure curves at both ends of a link (e.g., ),(, txD ili
+ and ),(, txD lli

− for 

link ),( li xx ), traffic state such as speed, flow, and density and other measures of effectiveness (MOEs) 

can be computed. This treatment results in an aggregated traffic state over all lanes of the link. Of course, 

one can work on partial curves (e.g., ),(, txD imi
+ and ),(, txD lmi

− ) based on partial lanes (e.g., the right 

lanes) to compute partial traffic states if one is really interested, though this would be much involved. 

As depicted in Figure 6, the right lanes can have two traffic states, congested and uncongested, if a 

queue tail is located on the right lanes and one can determine the queue tail if interested. Locating a queue 

tail is based on the presence of a shock wave which separates different traffic states as well as the fact that a 

shock wave always coincides with a queue tail under the assumption of triangular flow-density relationship. 

Son (1996) has given an excellent description on how to locate a queue tail, which is not repeated here. The 

basic idea behind is that, suppose at time t , the cumulative number of vehicles vs. location curve can be 

obtained either from forward moving wave, say ),(, txA mi , or from backward moving wave, 



say ),(, txD mi , where li xxx <<  and also suppose the queue on the right lanes is of interest. At the 

location of the shock wave/queue tail, 'x , the two curves intersect, i.e., ),'(, txA mi = ),'(, txD mi . A little 

search routine can be devised to find such location 'x  on link ),( li xx  such that the sign of ),'(, txA mi -

),'(, txD mi flips before and after this location. Otherwise, the queue tail has past this link or hasn’t yet 

reached this link. Once the queue tail has been located, cumulative departure curve at this location can be 

evaluated by interpolation, and traffic states before and after it can then be computed separately. 

It should be pointed out that, though the proposed model evaluates queues originated from different 

diverging branches separately and provides the potential to differentiate traffic states even in certain lane 

groups, the limited goal of simulation at a macroscopic level might not warrant keeping track of such level 

of detail. Actually, traffic engineers might be more interested in knowing the aggregate state of a link rather 

than the lane-by-lane difference and this is especially true as the network size gets big. 

 

EMPRIRCAL TESTS 

Empirical tests of the proposed model are based on data collected from GA-400 by Georgia 

NAVIGATOR system, an automatic traffic surveillance system covering the greater Atlanta metropolitan 

area. Link traffic states are reported and compared in an aggregate manner in these tests. 

 
The Test Site 

The test site is a diverge on the northbound of GA-400, as illustrated in Figure 8. The test site consists 

of an entrance link (4000043-4000046) followed by an upstream link (4000046-6006). There are two 

downstream links (6006-4000048 and 6006-4006006) after the diverging point. All mainline links have 4 

lanes with approximately the same capacity. The diverging point, node 6006, might be a bottleneck because 

queues can back up from either of the downstream links. The geometry data and traffic characteristic data 

of the test site are summarized in Table 1. 

 
Empirical Test 1 

Data for test 1 was collected on Thursday, September 12, 2002. Comparison of model prediction and 

field observation is based on qualitative as well as quantitative measures. 



Figure 9 shows the density vs. time curves of each link in test 1. The solid line is observed density and 

the dashed line is predicted density. The X axis is time of day and the Y axis is density in veh/km/ln. The 

test runs from 00:01 to 23:51, almost a whole day. There are two peaks during this day. The morning peak 

originates from the downstream of node 4000048 probably caused by insufficient capacity, while the 

afternoon peak backs up from the downstream of node 4006006 due primarily to high exit volume.  

Generally, it is preferable to have congestion contained in the bounding box of the time-space 

diagram. However, congestion backing up from downstream is also acceptable. If congestion backs up past 

the upstream end, there is a problem because traffic is now operating at the congested side of the 

underlying flow-density curve and the arrival flow no longer represents the true demand. If this is the case, 

one generally goes further upstream, trying to find a node where congestion never reaches. In this way, the 

congestion is contained in the new bounding box. 

Unfortunately, the afternoon peak in our case passes the upstream end, but we are unable to find an 

uncongested node further upstream because, otherwise, we would have to incorporate another freeway 

junction which is unacceptable in this test. Therefore, limited confidence should be given to the portion 

where the congestion exceeds the upstream boundary. 

Nevertheless, this test is a good example to demonstrate the validity of the proposed model – queues 

can build up from either branch of a diverge and constrain upstream traffic accordingly. In general, the 

contours show a good agreement between the prediction and the observation. 

In Figure 10, it is clearer that the afternoon queue does exceed the upstream end. Fortunately, this 

queue lasts less than 30 minutes and its impact on the rest part of the figure is limited. More specifically, 

we are confident with the full process of the morning queue, and we are also sure about the formation of the 

afternoon queue up to the upstream end, but only limited confidence can be given to the portion beyond this 

point and the queue dissipation. 

In Figure 11, the highest bar represents 846 samples and the second highest represents 249 samples. 

Therefore, prediction error within ±5 makes up 96% of the total samples. 

A simultaneous statistical test, based on batch means technique (Goldsman and Tokol 2000), is 

performed with two hypothesizes: the mean of prediction error is not statistically different than 0 (i.e., the 

model is unbiased) and the variance of prediction error is sufficiently small. The results show that the first 



hypothesis holds at 95% confidence level, and the second hypothesis translates to a 95% confidence 

interval of (-0.024786, 0.031377) ×100% for percentage error if the sample variance is taken as small 

enough. 

 

Empirical Test 2 

Data for empirical test 2 of diverging scenario was collected on Monday, December 9, 2002 from 

00:00 to 23:45, almost a whole day. 

Figure 12 shows density vs. time curves at each link of the site. There are two peaks during this day, a 

morning peak and an afternoon peak. The morning peak, originated from the downstream of node 4000048, 

is caused by insufficient downstream capacity. What makes this example interesting is that the afternoon 

peak is caused by congestion at both downstream links (6006-4000048 and 6006-4006006). At 

approximately 16:40, a queue backs onto link 6006-4000048 and continues to move towards upstream. At 

approximately 17:51, another queue pops in at link 6006-4006006 and also keeps moving backwards. Both 

of the two queues propagate past node 6006 and continue to build up on the upstream link. The off-ramp 

queue clears out around 18:15, and the mainline queue dissipates at approximately 18:00. 

The figure generally shows a good fit between the prediction and the observation with a little over-

prediction at both peaks on link 6006-4000048 and a little under prediction in the middle. 

Figure 13 shows a good agreement between the prediction and the observation as far as congested 

region is concerned. The morning peak is smaller in scale, while the afternoon peak starts with a tiny queue 

and, barely after this queue clears out, another larger queue returns and reaches somewhere between nodes 

4000042 and 4000046. 

The highest bar in Figure 14 represents 722 samples, and the second highest 335 points, so prediction 

error within ±5 veh/km/ln roughly accounts for more than 92% of the total samples. 

Simultaneous statistical test shows that there is also a lack of evidence that the mean of prediction 

error is statistically different than 0 at 95% level of confidence. The test suggests a 95% confidence interval 

of (-0.043319, 0.040738) ×100% for percentage prediction error. 

 



CONCLUSION 

This paper proposes a contribution-based weighted splitting (CBWS) diverge model that evaluates 

queues from different diverging branches separately and considers friction between right and left lanes. 

Based on this, the simplified theory of kinematic waves is extended to incorporate diverges and the 

proposed diverge model is used to split and advance traffic. Though traffic state at a link is modeled in an 

aggregate manner as most macroscopic simulation models do, the treatment of queuing from different 

diverging branches enhances the realism and accuracy of traffic simulation at the diverge, as supported by 

empirical tests. 
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TABLE 1 Geometry and traffic characteristics data for the test site 

 

Link Up node Down 

node 

Length 

(km) 

# of 

lanes 

Type FFS * 

(km/h) 

Capacity 

(veh/h/ln) 

Jam density 

(veh/km/ln) 

1 4000043 4000046 1.504 4 Mainline 108.8 2200 112.5 

2 4000046 6006 0.368 4 Mainline 108.8 2200 112.5 

3 6006 4000048 0.832 4 Mainline 96 2200 112.5 

4 6006 4006006 0.8 1 Off-ramp 96 2000 112.5 

 

* FFS – Free Flow Speed 



 

 

FIGURE 1 Sketch of a diverge 

 

 

FIGURE 2 Diverge model 1 – Newell’s 1st model, Daganzo’s model, and Lebacque’s 1st model 

 

 

 

FIGURE 3 Diverge model 2 - Newell’s 2nd model 
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FIGURE 4 Diverge model 3 – the realistic model 

 

 

 

 

FIGURE 5 Diverge model 4 - Lebacque's 2nd model 

 

 

FIGURE 6 Diverge model 5 – the contribution-based weighted splitting (CBWS) diverge model 
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FIGURE 7 Data of simplified kinematic waves at a diverge 

 

 

 

 

 

 

 

 

 

FIGURE 8 The test site of simplified kinematic waves at a diverge 
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B. Density vs Time Curve, section 4000046-6006
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C. Density vs Time Curve, section 6006-4000047
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FIGURE 9 Density vs. time curves of test 1 
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FIGURE 10 Density contours of test 1 
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FIGURE 11 Histogram of prediction error of test 1 (1144 Samples) 

 

 



0 1 2 3 4 5 6 7 8 9

x 10
4

0

5

10

15

20

25

D
en

si
ty

 (
ve

h/
km

/ln
)

A. Density vs Time Curve, section 4000042-4000046

Observed
Predicted

0042 0046 00486006

0 1 2 3 4 5 6 7 8 9

x 10
4

0

10

20

30

40

50

D
en

si
ty

 (
ve

h/
km

/ln
)

B. Density vs Time Curve, section 4000046-6006

Observed
Predicted

0042 0046 00486006



0 1 2 3 4 5 6 7 8 9

x 10
4

0

10

20

30

40

50

60

D
en

si
ty

 (
ve

h/
km

/ln
)

C. Density vs Time Curve, section 6006-4000047

Observed
Predicted

0042 0046 00486006

0 1 2 3 4 5 6 7 8 9

x 10
4

0

20

40

60

80

D
en

si
ty

 (
ve

h/
km

/ln
)

D. Density vs Time Curve, section 6006-406006

Observed
Predicted

0042 0046 00486006

 

FIGURE 12 Density curves of test 2 
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FIGURE 13 Density contours of test 2 
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FIGURE 14 Histogram of prediction error of test 2 (1144 Samples) 
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