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ABSTRACT

This paper presents a broad perspective on traffic flow modeling at a spectrum of four scales. Modeling objectives
and model properties at each scale are discussed and existing efforts are reviewed. In order to ensure modeling
consistency and provide a microscopic basis for macroscopic models, it is critical to address the coupling among
models at different scales, i.e. how less detailed models are derived from more detailed models and, conversely, how
more detailed models are aggregated to less detailed models. With this understanding, a consistent modeling approach
is proposed based on field theory and modeling strategies at each of the four scales are discussed. In addition, a few
special cases are formulated at both microscopic and macroscopic scales. Numerical and empirical results suggest
that these special cases perform satisfactorily and aggregate to realistic macroscopic behavior. By ensuring model
coupling and modeling consistency, the proposed approach is able to establish the theoretical foundation for traffic
modeling and simulation at multiple scales seamlessly within a single system.

1 INTRODUCTION

Macroscopic view
Mesoscopic view

Microscopic view
Picoscopic view

Figure 1: Multiscale traffic flow modeling

Anyone who used maps probably developed the following
experience. Fifteen years ago, a 1:10,000 paper map
was needed to view a city (e.g. Amherst, MA), while
a 1:1,000,000 paper map was needed to view a state
(e.g. Massachusetts). If the scale was changed, a new
map was needed. Today, using digital maps (e.g. Google
maps), one is able to overview the entire country, and then
progressively zoom in to view Massachusetts, Amherst,
and even the UMass Amherst campus, all seamlessly and
within a single system.

Similarly, it is desirable that traffic simulation would
allow an analyst to zoom in to examine low-level details
and zoom out to overview system-wide performance within
the same simulation process. Figure 1 illustrates such a
paradigm. The background represents a macroscopic view
of traffic operation in an entire region. This is analogous to viewing traffic 10,000 m above the ground and the
traffic appears to be a compressible fluid whose states (speed, flow, and density, etc.) propagate like waves. As one
zooms in to a local area of the region, a mesoscopic view is obtained. This is like viewing traffic 3,000 m above the
ground where the sense of waves recedes and a scene of particles emerges. As one further zooms in to a segment
of the roadway, a microscopic view is resulted. Similar to watching traffic 1,000 m above the ground, the scene
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is dominated by moving particles that interact with each other so as to maintain safe positions in traffic stream.
Finally, if one focuses on a few neighboring vehicles, a picoscopic view is achieved as if one were operating one
of the vehicles. As such, one has to interact with the driving environment (e.g. roadway, signs, signals, etc.), make
control decisions, and manage vehicle dynamic respond to travel safely. If such a “zoomable” simulation becomes
available, one would be able to translate traffic flow representation among multiple scales, e.g. to trace a low-level
event all the way to a high-level representation and, conversely, to decompose a global problem down to one or
more local deficiencies. As such, the “zoomable” simulation will transform the way that traffic flow is analyzed
and transportation problems are addressed.

The objective of this paper is to address multiscale traffic flow modeling with inherent consistency. The term
consistency here concerns the coupling among models at different scales, i.e. how less detailed models are derived
from more detailed models and, conversely, how more detailed models are aggregated to less detailed models.
Only consistent multiscale models are able to provide the theoretical foundation for the above “zoomable” traffic
simulation. The paper is organized as follows. Section 2 takes a broad perspective on a spectrum of four modeling
scales. Modeling objectives and model properties at each scale are discussed and existing efforts are reviewed.
Section 3 presents the proposed multiscale approach based on field theory. Modeling strategy at each scale is
discussed and some special cases are formulated at both the microscopic and macroscopic scales. The emphasis of
this multiscale approach is to ensure coupling among different modeling scales. Section 4 presents numerical and
empirical results in support of the special cases developed in the previous section. Concluding remarks and future
directions are presented in Section 5.

2 THE SPECTRUM OF MODELING SCALES

The modeling of traffic flow can be performed at, but is not limited to, a spectrum of four scales, namely picoscopic,
microscopic, mesoscopic, and macroscopic from the most to the least detailed in that order. Considering that the
definition of these modeling scales are rather vague, implicit, or absent in the literature, this section attempts to
provide an explicit definition so that existing and future models are easily classified and related. Such a definition
is tabulated in Figure 2 for each of the four modeling scales based on their properties (i.e. rows in the table)
and literature related to each modeling scale is reviewed in subsequent subsections. The first three rows (“State
variable”, “Variable description”, and “State diagram”) are discussed in this section and the remaining three rows
(“Underlying principle”, “Modeling approach”, and “Model coupling”) pertain to the proposed multiscale approach
with inherent consistency which are to be elaborated in the next section.

2.1 The Picoscopic Scale

Picoscopic modeling should be able to represent traffic flow so that the trajectory of each vehicle, (xi(t),yi(t)) where
i ∈ {1,2,3, ..., I} denotes vehicle ID, can be tracked in both longitudinal x and lateral y directions over time t ≥ 0.
Knowing these vehicle trajectories, the state and dynamics of the traffic system can be completely determined.
Therefore, (xi(t),yi(t)) is the state variable (one or a set of variables that characterizes the state of a system). The
corresponding state diagram (a graphical representation that illustrates the dynamics or evolution of system state)
consists of these vehicle trajectories in a three-dimensional domain (x,y, t).

Picoscopic models are mainly of interest in automotive engineering. Dynamic vehicle models with varying
degrees of freedom have been proposed (Abe 1985, Antoun, Hackert, O’Leary, and Sitchin 1986, Nalecz and
Bindemann 1988, Jawad, Mahmood, and Baccouche 1999, Lowndes and David 2000). A myriad of driver models
have been reported to assist various aspects of automotive engineering including vehicle handling and stability.
Control Theory was widely applied in modeling vehicle control (Wierwille, Gagne, and Knight 1967, Blaauw,
Godthelp, and Milgram 1984, Majjad, Kiencke, and Koerner 1998, Sharp, Casanova, and Symonds 2000, Chen
and Ulsoy 2002, Frezza, Saccon, Minen, and Ortmann , Cole, Pick, and Odhams 2006, Gordon and Best 2006,
Liu 2007). Models in this category typically incorporate one or more feedback loops. These loops are used by the
controller to adjust its output to minimize control error. Human drivers can better perform reasoning using vague
terms than controllers. This observation allows the use of fuzzy logic (Kramer and Rohr 1982, Kageyama and
Pacejka 1991, El Hajjaji and Ouladsine 2001, Gao, Zheng, Guan, and Guo 2002), which controls vehicles based on
some predefined rules. To allow implicit driving rules, Artificial Neural Networks (Macadam and Johnson 1996,
Kageyama, Arai, and Nomura 2000, Kuriyagawa, Im, Kageyama, and Onishi 2002, Lin, Tang, Zhang, and Yu 2005,
Goktas, Cavusoglu, Sen, and Toktas 2007) learn ”driving experiences” from training processes and then apply the
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Figure 2: The spectrum of modeling scales

learned experiences in future driving. Several literature surveys of driver models are available (Zadeh, Fahim, and
El-Gindy 1997, Irmscher, Jurgensohn, and Willumeit 1999, Macadam 2003).

2.2 The Microscopic Scale

Microscopic modeling should be able to represent traffic flow so that the trajectory of each vehicle can be tracked in
the longitudinal direction xi(t) with the lateral direction being discretized by lanes LNi(t) where LN ∈ {1,2, ...,n}.
Hence, (xi(t),LNi(t)) is state variable that describe the sate and dynamics of traffic flow at this scale and the
corresponding state diagram consists of vehicle trajectories in a two-dimensional domain (x, t).

Within traffic flow community, microscopic models treat driver-vehicle units as massless particles with person-
alities. The behavior of these particles is governed by car-following models in the longitudinal direction and discrete
choice (e.g. lane-changing and gap-acceptance) models in the lateral direction. Car-following models describe how
a vehicle (the follower) responds to the vehicle in front of it (the leader). For example, stimulus-response models
(Chandler, Herman, and Montroll 1958, Kometani and Suzaki 1958, Gazis, Herman, and Rothery 1961, Ceder and
May 1976) assume that the follower’s response (e.g. desired acceleration) is the result of stimuli (e.g. spacing
and relative speed) from the leader, desired measure models (Pipes 1953, Newell 1961, Gipps 1981, Benekohal
and Treiterer 1988) assume that the follower always attempts to achieve his desired gains (e.g. speed and safety),
psycho-physical models (Michaels 1963, Wiedemann 1974, Kikuchi and Chakroborty 1992) introduce perception
thresholds that trigger driver reactions, and rule-based models (Kosonen 1999) apply ”IF-THEN” rules to mimic
driver decision making. Lane-changing and gap-acceptance models describe how a driver arrives at a lane change
decision and how the driver executes such a decision, respectively. Approaches to lane-changing include mandatory
and discretionary lane-changing (MLC/DLC) (Gipps 1986, Yang and Koutsopoulos 1996, Ahmed, Ben-Akiva, Kout-
sopoulos, and Mishalani 1996, Halati, H., and S. 1997, Kosonen 1999), adaptive acceleration MLC/DLC (Hidas and
Behbahanizadeh 1999, Zhang, Owen, and Clark 1998, Toledo, Koutsopoulos, and Ben-Akiva 2003), and autonomous
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vehicle control (Sukthankar 1997). The following have been attempted to model gap acceptance: deterministic
models (Raff and Hart 1950, Velan and Van Aerde 1996, Hamed, Sama, and Batayneh 1997, Al-Masaeid and Faddah
1997, Gattis and Low 1998), probabilistic models (Herman and Weiss 1961, Drew, LaMotte, Buhr, and Wattleworth
1967, Siegloch 1973, Daganzo 1981, Mahamassani and Sheffi 1981, Madanat, Cassidy, and Wang 1993, Hewitt
1992, Cassidy, Madanat, Wang, and Yang 1995), and neuro-fuzzy hybrid models (Rossi and Meneguzzer 2002).
More surveys on microscopic models can be found in the literature(Gartner, Messer, and Rathi 2001, Hoogendoorn
and Bovy 2001).

2.3 The Mesoscopic Scale

Mesoscopic modeling should be able to represent traffic flow so that the probability of the presence of a vehicle
at a longitudinal location x with speed v at time t is tracked. The lateral direction is only of interest if it provides
passing opportunities. The state diagram typically involves a two-dimensional domain (x,v) at an instant t and the
domain is partitioned into cells with space increment dx and speed increment dv. The state variable is a distribution
function f (x,v, t) such that f (x,v, t)dxdv denotes the probability of having a vehicle within space range (x,x+dx)
and speed range (v,v+dv) at time t. Knowing the distribution function f (x,v, t), the dynamics of the system can
be determined statistically.

Conventional mesoscopic traffic flow models come with three flavors. First, models such as the one in
TRANSIMS (Smith, Beckman, Anson, Nagel, and Williams 1995, Morrison and Loose 1995, LANL 1999) take
a Cellular Automata approach where the space domain (representing the longitudinal direction of a highway)
is partitioned in to short segments typically 7.5 meters long. If occupied, a segment is only able to store one
vehicle. Vehicles are then modeled as hopping from one segment to another, so their movement and speed are
discretized and can only take some predetermined values. Second, models such as those implemented in DynaMIT
(Ben-Akiva, Bierlaire, Koutsopoulos, and Mishalani 1998) and DYNASMART (Chang, Junchaya, and Santiago
1994) use macroscopic models (such as speed-density relationship), as oppose to microscopic car-following models,
to determine vehicle speed and movement. Third, truly mesoscopic models such as the one postulated by Prigogine
and his co-workers (Prigogine and Andrews 1960, Prigogine 1961, Prigogine and Herman 1971) are based on
non-equilibrium statistical mechanics or kinetic theory which draw analogy between classical particles and highway
vehicles. Prigogine’s model criticized (Haight 1971) for (1) lacking theoretical basis, (2) lacking realism (e.g. car
following, driver preferences, and vehicle lengths), and (3) lacking satisfactory agreement with empirical data. Many
efforts have been made to improve Prigogine’s model by addressing critiques 2 and 3. For example, Paveri-Fontana
(Paveri-Fontana 1975) considered a driver’s desired speeds, Helbing (Helbing 1995) adapted the desired speeds
to speed limits and road conditions, Phillips (Phillips 1977, Phillips 1979) incorporated vehicle lengths, Nelson
(Nelson 1995) accounted for vehicle acceleration behavior, and Klar and Wegener (Wegener and Klar 1996, Klar
and Wegener 1999) included a stochastic microscopic model. Surveys of previous approaches are available in the
literature(Helbing 2001, Chowdhury, Santen, and Schadschneider 2000, Gartner, Messer, and Rathi 2001).

2.4 The Macroscopic Scale

Macroscopic modeling should be able to represent traffic flow so that only local aggregation of traffic flow (e.g.
density k, speed u, and flow q) over space (longitudinal) x and time t is tracked. Traffic density k(x, t) is a good
candidate of state variable because, unlike flow and speed, density is an unambiguous indicator of traffic condition.
The state diagram typically involves a two dimensional domain (x, t). Knowing k(x, t), the dynamics of the system
can be determined macroscopically.

Conventional macroscopic traffic flow models describe the propagation of traffic disturbances as waves. A
fundamental basis for formulating wave propagation is the law of conservation. The first-order form of the law is
mass/vehicle conservation, which is used to create first-order models(Lighthill and Whitham 1955, Richards 1956,
Bick and Newell 1960, Munjal and Pipes 1971). In addition, momentum and energy may also be conserved. A
model is of a higher order if it incorporates the latter forms of conservation(Payne 1971, Whitham 1974, Khne 1984,
Khne 1989, Kerner and Konhauser 1993, Michalopoulos, Yi, and Lyrintzis 1993, Zhang 1998, Treiber, Hennecke,
and Helbing 1999). Since the limited benefit offered by higher-order models often does not justify their added
complexity(Daganzo 1995b), numerical approximation and macroscopic simulation have been centered on first-order
models, e.g. KRONOS(Michalopoulos 1984), KWaves(Newell 1993, Newell 993b, Newell 993c), CTM(Daganzo
1994, Daganzo 1995c, Daganzo 1995a, Daganzo 1999), FREQ(May 1998, Leiman, Bouaouina, and May 1991),
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and CORQ (Yager 1975). More surveys of macroscopic models can be found in the literature(Gartner, Messer, and
Rathi 2001, Hoogendoorn and Bovy 2001).

2.5 Issues of Multiscale Modeling

Remarkably, existing models at the same scale typically follow different modeling approaches and, hence, it is
difficult to relate these models to each other. In addition, models at different modeling scales are rarely coupled.
For example, a macroscopic model typically lacks a microscopic basis and a microscopic model does not have its
macroscopic counterpart.

Therefore, an ideal multiscale modeling approach should emphasize not only model quality at each individual
scale but also the coupling between different scales. Only models formulated following such an approach is able
to support the “zoomzble” traffic simulation discussed in Section 1. As such, the resulting state diagram at a more
detailed scale contains the necessary information to reproduce a less detailed diagram, as illustrated in Figure 2.
For example, the microscopic diagram is simply a projection of the picoscopic diagram onto the x− t plane and the
macroscopic state diagram can be completely reconstructed from the microscopic diagram using Eddie’s definition
of traffic flow characteristics (Eddie 1963, Ni 2007).

3 THE PROPOSED MULTISCALE APPROACH

Figure 3: The closed-loop system

The objective of this section is to pursue the above mul-
tiscale modeling approach and develop strategies to for-
mulate a spectrum of models with inherent consistency.
The approach starts at the picoscopic scale by formulating
a model that is mathematically amenable to representing
the natural way of human thinking while comply to phys-
ical principles; the microscopic model can be simplified
from the picoscopic model yet still capturing the essen-
tial mechanisms of vehicle motion and interaction; the
mesoscopic model can be derived from the microscopic
model based on principles of non-equilibrium statistical
mechanics; the macroscopic model can be derived from the mesoscopic model by applying principles of fluid
dynamics. See a summary of underlying principle, modeling approach, and modeling coupling in Figure 2.

3.1 Picoscopic modeling
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Figure 4: The illustration of a perceived field

In order to conform to real-world driv-
ing experiences, the proposed model
should mimic the way that a driver oper-
ates his/her vehicle and responds to the
driving environment. Based on princi-
ples of control theory, a driver-vehicle-
environment closed-loop control (DVE-
CLC) system (Ni 2006b, Ni 2006a, Ni
2003) has been developed. Figure 3 il-
lustrates the components of the system
and its control flow including feedback
loops.

This system consists of a driver
model and a vehicle model which in-
teract with each other as well as with
the driving environment. the driver re-
ceives information from the environment
such as roadways, traffic control devices,
and the presence of other vehicles. The
driver also receives information from
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his/her own vehicle such as speed, acceleration, and yaw rate. These sources of information, together with
driver properties and goals, are used to determine driving strategies (such as steering and gas/brake). The driving
strategies are fed forward to the vehicle which also receives input from roadways. These sources of information,
together with vehicle properties, determine the vehicle’s dynamic responses based on vehicle dynamic equations.
Moving longitudinally and laterally, the vehicle constitute part of the environment. Other vehicle dynamic responses
such as speed, acceleration, and yaw rate are fed back to the driver for determining driving strategies in the next
step. Thus traffic operation is the collection of movement and interaction of all vehicles in the environment.

Assuming a long section of highway without worrying about routing and turning, the driver model can be
formulated by applying principles of field theory. Basically, objects in a traffic system (e.g. roadways and vehicles)
are perceived by a subject driver as component fields. The driver interacts with an object at a distance and the
interaction is mediated by the field associated with the object. The superposition of these component fields represents
the overall hazard encountered by the subject driver. Hence, the objective of vehicle motion is to seek the least
hazardous route by navigating through the field along its valley and traffic flow consists of the motion and interaction
of all vehicles. With this understanding, the driver model at the picoscopic scale is formulated as follows. Figure 4
illustrates a scenario where the subject driver-vehicle unit i (the trailing one in the middle lane) is moving along with
its leader j in the same lane and neighbor k in the adjacent lane. The overall field perceived by driver i is denoted
as Ui whose two cross sections Ui,x and Ui,y are shown above the ground with vehicle i illustrated as a dot riding on
the field. The vehicle is subject to forces from the roadway and surrounding vehicles. Such forces can be interpreted
as the stress on the driver to pursue desired speed vi, keep lane, and observe safe distances. More specifically,
these forces include: roadway gravity Gi which accelerates the vehicle, roadway resistance Ri which prevents the
vehicle from speeding, lane keeping force Ni should the vehicle depart its current lane, vehicle interaction forces
F j

i and Fk
i with the former preventing forward crash and the latter side crash. By applying principles of field

theory, the following can be established F j
i = ∂Ui,x

∂x and Fk
i −Ni = − ∂Ui,y

∂y . Therefore, by incorporating time t and
perception-reaction time τi, the net force acting on driver i can be formulated as:

{
miẍi(t + τi) = ∑Fi,x(t) = Gi(t)−Ri(t)−F j

i (t) = Gi(t)−Ri(t)+ ∂Ui,x
∂x

miÿi(t + τi) = ∑Fi,y(t) = Fk
i −Ni =− ∂Ui,y

∂y

where specific forms of Gi, Ri, F j
i , Fk

i , Ni, and Ui are open for admitting different modeling strategies. This equation
system determines driver i’s operational control in longitudinal and lateral directions.

3.2 Microscopic modeling

Figure 5: Microscopic modeling

The microscopic model can be formulated by sim-
plifying the above picoscopic model as follows: (a)
ignoring interactions inside a driver-vehicle unit al-
lowing it to be modeled as an active particle, (b)
representing a driver’s longitudinal and lateral con-
trol using separate but simpler models, (c) reducing
the vehicle dynamic system to a particle, and (d)
simplifying roadway surfaces to a collection of lines.

With the above simplifications, the two-
dimensional (3D) potential field U in Figure 4 re-
duces to a 2D potential function. The upper part
of Figure 5 illustrates an example where a subject
driver i (the middle one) is traveling behind a leading vehicle j and followed by a third vehicle p in the adjacent
lane. The potential field Ui perceived by the driver is shaded in the lower part of the figure and is represented
by a curve in the upper part. Since the trailing vehicle in the adjacent lane does not affect the subject driver’s
longitudinal motion, the ”stress” on the subject driver to keep safe distance only comes from the leading vehicle

and can be represented as:F j
i =− ∂U j

i
∂x . By incorporating roadway gravity Gi, roadway resistance Ri, and interaction

between vehicles F j
i , the net force on i can be expressed more specifically as: miẍi = Gi−Ri−F j

i . Departing from
the above equation, a few special cases deserve particular attention:
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ẍi(t + τi) = gi[1− (
ẋi(t)

vi
)− e

si j(t)
∗−si j(t)

si j(t)∗ ] (1)

ẍi(t + τi) = gi[1− (
ẋi(t)

vi
)− e

si j(t)
∗−si j(t)
viτi ] (2)

ẍi(t + τi) = gi[1− (
ẋi(t)

vi
)−2(1− 1

1+ e
si j(t)∗−si j(t)

viτi/2+L j

)] (3)

where it is assumed that Gi = mi× gi, Ri = mi× ( ẋi(t)
vi

), F j
i = mi× f (si j,si j(t)∗), mi is vehicle mass, gi is the

maximum acceleration that driver i is willing to apply when starting from stand still, ẋi(t) is the actual speed of
vehicle i, vi is the desired speed of driver i, si j = x j− xi is the actual spacing between vehicles i and j, xi is the
position of vehicle i, x j is the position of vehicle j, s∗i j is the desired spacing between vehicles i and j. L j is
the nominal length of vehicle j and is conveniently used as the spacing between two vehicles in jammed traffic.
The the difference (s∗i j− si j) represents how far vehicle i intrudes beyond s∗i j. The rationale of representing the

interaction force F j
i between vehicles i and j using an exponential function is to set the desired spacing s∗i j as

a base line, beyond which the intrusion by unit i is translated exponentially to the repelling force acting on the
unit. The desired spacing s∗i j can be further determined as follows. According to (Gipps 1981), the desired spacing
should allow vehicle i to stop behind its leading vehicle j after a perception-reaction time τi and a deceleration
process at a comfortable level bi > 0 should vehicle j applies an emergency brake at rate B j > 0. This rule results

in: s∗i j(t) = xi−1(t)− xi(t)≥
ẋ2

i (t)
2bi

+ ẋiτi−
ẋ2

i−1(t)
2Bi−1

+L j.
The driver’s lateral control concerns changing lanes to seek a speed gain or to use an exit. The shaded areas

in the bottom part of Figure 5 can be interpreted as drivers j and p’s personal spaces. A lane change decision is
reached whenever driver i intrudes into another driver’s personal space. With such a decision, driver i begins to
search for open spaces in adjacent lanes. In this particular case, such an open space happens to be available in the
left lane barely allowing the center of vehicle i to move in. Consequently, the result of the gap acceptance decision
is to abruptly switch vehicle i to the left lane.

3.3 Mesoscopic modeling

Figure 6: The x-v diagram

Mesoscopic modeling applies principles of Non-
Equilibrium Statistical Mechanics or kinetic theory
to model traffic flow. Essential to the modeling is the
determination of a distribution function f (x,v, t) such
that f (x,v, t)dxdv denotes the probability of having
a vehicle within space range (x,x +dx) and speed
range (v,v+dv) at time t (see Figure 6). The time
evolution of traffic flow is described by an evolution
equation: d f

dt = ∂ f
∂ t + ∂ f

∂x
dx
dt whose right-hand side is

to be determined. Therefore, the central question
is how to rigorously derive the evolution equation.
This can be done by following a procedure similar
to deriving the Boltzmann equation (Tolman 1980,
Harris 2004) from basic principles. The classical
Boltzmann equation describes particles moving in
a 3D domain, so the first step is to reduce the 3D
case to a 1D case which represents traffic moving on a unidirectional highway.

Existing models, in particular those based on Prigogine’s work, are postulated. In order to derive the 1D
Boltzmann equation from basic principles, a sound understanding of the mechanism of traffic evolution is required.
Existing models, including a derived model (Wegener and Klar 1996, Klar and Wegener 1999), assumed that the
mechanism is vehicle “collision”. For example, the fast follower i in the left panel of Figure 7) keeps its speed
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up to the collision point and then abruptly changes its speed. To be realistic, the speed change of vehicle i needs
to be smooth as it approaches its leader j as illustrated in the right panel of Figure 7). This is possible only if
car following is incorporated as the mechanism of particle interaction. As such, the longitudinal control model
presented above can be used to derive the 1D Boltzmann equation and, thus, ensures micro-meso coupling.

Figure 7: Car following

The derivation of the 1D Boltzmann
equation starts by applying conservation
law (e.g vehicles entering and exiting the
highlighted cell in Figure 6 should be
conserved). Existing models considered
only one direction (i.e. direction 1 be-
low) in which vehicles exit the cell, and
a similar treatment applies to vehicles
entering the cell. This approach causes
modeling errors. Actually, vehicles may

exit the cell in four directions: (1) vehicles slowed down (and hence exited the cell) due to a sluggish leader,
(2) vehicles physically moved out of the cell, (3) vehicles accelerated by an aggressive follower, and (4) vehicles
reversed, which is unlikely. The opposite applies to vehicles entering the cell. Therefore, applying the law to include
all directions is the correct approach. Since deriving the 1D Boltzmann equation is mathematically complicated,
this paper only presents potential directions of exploration, leaving the actual derivation to be addressed in future
research.

Once the 1D Boltzmann equation is formulated, one may solve it based on initial and boundary conditions to
study how traffic evolves over time and space. However, solving the equation can be quite involved, as is the case
for any classical Boltzmann equation. Fortunately, some important results can be inferred without fully solving the
equation. For example, a hydrodynamical formulation, which is essential to macroscopic modeling, can be derived
from the equation. In addition, the equation contains an equilibrium relationship between vehicle speed and traffic
density, which is also essential to macroscopic modeling. Such a relationship is analogous to the Maxwell-Boltzmann
distribution (the distribution of molecular speed under different temperature) which is the stationary (i.e. ∂ f

∂ t = 0)
solution to a classical Boltzmann equation.

3.4 Macroscopic modeling

Figure 8: The finite difference method

Macroscopic modeling applies principles of Fluid
Dynamics to model traffic flow as a 1D compress-
ible continuum fluid. While the above mesoscopic
modeling describes the distribution of vehicles in a
highway segment, macroscopic modeling represents
only the average state. Therefore, traffic density
k(x, t) can be related to the distribution f (x,v, t) as
its zeroth moment k(x, t) =

∫
f (x,v, t)dv and traffic

speed as the first moment u(x, t) = 1
k
∫

v f (x,v, t)dv.
Based on this understanding, it becomes clear that it
is feasible to derive a hydrodynamical formulation
from the mesoscopic model. The 1D Boltzmann
equation discussed above can be expressed in a
general form as: ∂ f

∂ t +v ∂ f
∂x = C where C denotes the

rate of change of f (x,v, t). Multiplying both sides
of this equation by 1, v, and 1

2 v2 and integrating
over v will give hydrodynamical equations of mass, momentum, and energy conservation. The mass conservation
equation: ∂k

∂ t + ∂ (ku)
∂x =

∫
Cdv is of particular interest because it describes the time evolution of traffic density k(x, t).

In order to solve the equation, an equilibrium speed-density relationship must be introduced into the macroscopic
model. Such a relationship can be derived from the mesoscopic model under stationary conditions or, alternatively,
obtained directly from the microscopic model by assuming equilibrium conditions. Presented below are a set of
equilibrium v-k relationships derived from the special cases of the microscopic model, respectively:
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v = v f [1− e1− k∗
k ] (4)

v = v f [1− e
1−

1/k j−1/k
v f τ ] (5)

v = v f [
2

1+ e
1/k j−1/k

v f τ/2+1/k j

−1] (6)

where k∗ = τve
− v

v f + 1
k j

, v f is free-flow speed, k j = 1/L, L is the bumper-to-bumper distance between vehicles when
traffic is jammed, τ is average perception-reaction time of drivers. Therefore, the macroscopic model consists of a
system of equations including the hydrodynamical formulation and the v-k relationship.

{
∂k
∂ t + ∂ (ku)

∂x =
∫

Cdv
v = V (k)

The the system of equations can be solved using a finite difference method, which is illustrated in Figure 8.
In this method, one partitions the time-space domain into cells and keeps track of traffic flowing into and out of
each cell.

4 EMPIRICAL AND NUMERICAL RESULTS

This section provides some empirical and numerical evidences in support of the proposed multiscale approach.
Particular attention is devoted to microscopic models such as the special cases proposed in Subsection 3.2 and their
corresponding speed-density relationships presented in Subsection 3.4.

At the microscopic level, the emphasis is to check if a model makes sense since it is not reasonable to expect
the same result out of a simulated run and a real one due to randomness. A physically meaningful scenario is
set up as follows which consists of multiple regimes typically encountered during driving. The scenario involves
two vehicles, a leader and a follower. The leader moves according to predetermined rules, while the motion of the
follower is stipulated by a microscopic model. More specifically, the follower i is initially stand still at xi(0) = 0.
The motion of the leader j is defined as follows:



x j = 5000, ẋ j = 0, ẍ j = 0 when 0≤ t < 100
x j = 2800, ẋ j = 25 when t = 100
ẍ j = 0 when 100≤ t < 200
ẍ j = 2 when 200≤ t < 210
ẍ j = 0 when 210≤ t < 300
ẍ j =−3 when 300≤ t < 315
ẍ j = 0 when t ≥ 315

where time t is in seconds (s), displacement x is in meters (m), speed ẋ is in m/s, and acceleration ẍ is in m/s2. The
above set up essentially means the following. Initially, both vehicles are stand still with the follower at xi(0) = 0
m and the leader in front at x j(0) = 5000 m. At time t = 100 s, a third vehicle in the adjacent lane traveling at
25 m/s cuts in front of the follower i at x = 2800 m. As such, this third vehicle takes over as the leader j and it
keeps its speed constant up to t = 200 s. Then, the leader begins to accelerate at a constant rate of 2 m/s2 for 10
seconds, which results in an ending speed of 45 m/s. After this, the leader cruises at that speed up to t = 300 s.
Next, the leader applies a constant deceleration at a rate of −3 m/s2 for 15 seconds, which essentially brings the
vehicle to a stop.

The following analysis assumes a normal driver who responds based on common sense. When the process starts,
vehicle i begins to move according to the logic stipulated in the microscopic model. Since vehicle j is far away, it
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essentially has no influence on vehicle i who is entitled to accelerate to its desired speed ẋi(t)→ vi = 25 m/s. This
process constitutes a free-flow regime. Right before t = 100 s, the follower is at somewhere around x = 2745 m
and the leader is 2255 m ahead. However, at t = 100 s, the third vehicle cuts in right in front at x = 2800 m taking
over as the new leader and shortening the inter-vehicle distance (i.e. spacing si j) to 55 m. The sudden change in
spacing causes the the follower to take emergency brake in order to maintain safe distance away from its leader.
This process constitutes a braking regime. The emergency brake slows down the follower and the spacing between
the two vehicles increases. When safe distance is achieved, the follower begins catch up with the leader’s speed and
maintain the safe distance thereafter. This constitutes a car-following regime. Starting from t = 200 s, the leader
begins to accelerate and eventually cruises at 45 m/s. As the leader speeds up, the spacing increases allowing the
follower to accelerate as well. Since the leader travels much faster than the follower and the gap is opening, the
follower is entitled to accelerate as desired and eventually settles at its desired speed vi = 30 m/s. This returns to
the free-flow regime again. Note that the leader’s cruise speed is an exaggeration which is made on purpose to
highlight the effect that the follower does not blindly follow its leader beyond its desired speed. At t = 300 s, the
leader begins to decelerate at comes to a stop at x j = 10000 m after 15 seconds. As the follower approaches the
stopped leader, the follower begins to decelerate, too, at a comfortable rate and finally rests right behind the leader.
This process constitutes a transition from a approaching regime to the braking regime.

Figure 9 shows the performance of the special case 1 formulated in Eq. (1). Three profiles are illustrated:
displacement, speed, and acceleration. Broken red lines are for the leader whose motion is predetermined as above,
while solid blue lines are for the follower whose motion is stipulated by the model. Examination of the follower’s
performances in the free-flow, approaching, car-following, braking regimes reveals that the model does conform
to the above common sense analysis. Special cases 2 (Eq. (2)) and 3 (Eq. (3)) yield similar results and are not
repeated here.

Figure 9: Performance of microscopic model special case 1 (Equation 1)

Figure 10: Performance of macroscopic model special case 1 (Equation 4)

At the macroscopic level, the emphasis is to compare the simulated results against empirical observations across
many vehicles and over time. The empirical data is collected from GA 400 by Georgia NAVIGATOR system.
The resulting speed vs density, flow vs density, and speed vs flow plots are illustrated as dots in Figure 10. Solid
blue lines show the performance of macroscopic special case 1 (Eq. (4)) which is derived from Eq. (1) with the
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following parameters: free-flow speed v f = 29 m/s, average perception-reaction time τ = 1.3 s, and jam density
k j = 1/5 veh/m. The plots show that the model agrees empirical observations very well. The other two special
cases performs similarly and are not repeated here.

5 CONCLUSION AND FUTURE DIRECTIONS

This paper presents a broad perspective on traffic flow modeling at a spectrum of four scales: picoscopic, microscopic,
mesoscopic, and macroscopic from the most to the least detailed level in that order. Modeling objectives and model
properties at each scale are discussed and existing efforts are reviewed.

In order to ensure modeling consistency and provide a microscopic basis for macroscopic models, it is critical to
address the coupling among models at different scales, i.e. how less detailed models are derived from more detailed
models and, conversely, how more detailed models are aggregated to less detailed models. With this understanding,
a consistent modeling approach is proposed based on field theory. Basically, in this approach, physical world
objects (e.g. roadways, vehicles, and traffic control devices) are perceived by the subject driver as component fields.
The driver interacts with an object at a distance and the interaction is mediated by the field associated with the
object. In addition, the field may vary when perceived by different drivers depending on their characteristics such
as responsiveness and perception-reaction time. The superposition of these component fields represents the overall
hazard encountered by the subject driver. Hence, the objective of vehicle motion is to seek the least hazardous route
by navigating through the field along its valley. Consequently, traffic flow is modeled as the motion and interaction
of all vehicles.

Modeling strategies at each of the four scales are discussed. More specifically, the field theory serves as
the basis of picoscopic modeling which represents a driver-vehicle unit as driver-vehicle-environment closed-loop
control system. The system is able to capture vehicle motion in longitudinal and lateral directions. The microscopic
model is obtained from the picoscopic model by simplifying its driver-vehicle interactions, vehicle dynamics, and
vehicle lateral motion. The mesoscopic model is derived from basic principles using the microscopic model as the
mechanism of traffic evolution. The macroscopic model includes an evolution equation (which is derived by taking
moments of the mesoscopic model) and an equilibrium speed-density relationship (which is the stationary solution
to the mesoscopic model or derived from the microscopic model directly). Therefore, the proposed approach ensures
model coupling and modeling consistency. As such, consistent models drived from this approach are able to provide
the theoretical foundation to develop the “zoomable” traffic simulation tool discussed in Section 1.

A few special cases of the microscopic model are formulated. Further, their corresponding equilibrium speed-
density relationships are derived. A numerical test is devised to verify if these microscopic special cases make any
sense. In addition, the equilibrium relationships are validated against empirical data. Both numerical and empirical
results suggest that these special cases perform satisfactorily and aggregate to realistic macroscopic behavior.

This paper emphasizes modeling strategies at the four scales. Though a family of special cases are formulated
at the microscopic and macroscopic scales, further efforts are needed to complete the spectrum by adding specific
models at the picoscopic and mesoscopic scales. In addition, with the rapid development of wireless technologies
and the deployment of IntelliDriveSM initiative, the effects of vehicle-vehicle and vehicle-roadside communications
will transform the way a transportation system operates. Therefore, it is desirable that traffic flow models are able
to incorporate such effects to realistically simulate IntelliDriveSM-enabled transportation systems.
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