Skip to main content
Article
Biofield Energy Treatment: A Potential Strategy for Modulating Physical, Thermal and Spectral Properties of 3-Chloro-4-fluoroaniline
Thermodynamics & Catalysis (2015)
  • Dahryn Trivedi
Abstract
3-Chloro-4-fluoroaniline (CFA) is used as an intermediate for the synthesis of pharmaceutical compounds. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of CFA. The study was performed in two groups (control and treated). The control group remained as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment. The control and treated CFA samples were further characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), fourier transform infrared (FT-IR) spectroscopy, and ultra violet-visible spectroscopy (UV-vis) analysis. The XRD analysis of treated CFA showed significant changes in the intensity of peaks as compared to the control. However, the average crystallite size (G) was significantly decreased by 22.08% in the treated CFA with respect to the control. The DSC analysis showed slight decrease in the melting temperature of treated CFA (47.56°C) as compared to the control (48.05°C). However, the latent heat of fusion in the treated sample was considerably changed by 4.28% with respect to the control. TGA analysis showed increase in maximum thermal decomposition temperature (Tmax) of the treated sample (163.34°C) as compared to the control sample (159.97°C). Moreover the onset temperature of treated CFA (148 °C) was also increased as compared to the control sample (140°C). Additionally, the weight loss of the treated sample was reduced (42.22%) with respect to the control (56.04%) that may be associated with increase in thermal stability. The FT-IR spectroscopic evaluation showed emergence of one new peak at 3639 cm-1 and alteration of the N-H (stretching and bending) peak in the treated sample as compared to the control. Overall, the result demonstrated that Mr. Trivedi’s biofield energy treatment has paramount influence on the physical, thermal and spectral properties of CFA.

Keywords
  • Trivedi Effect,
  • The Trivedi Effect,
  • Mahendra Kumar Trivedi,
  • Mahendra Trivedi,
  • Biofield,
  • Biofield Treatment,
  • Use of Cfa in Synthesis of Herbicides,
  • Pharmaceutical Applications of Cfa,
  • FT-IR Spectroscopy of Cfa,
  • FT-IR Analysis of Cfa,
  • XRD Study/Analysis of Chloro Fluoroaniline,
  • UV-Vis Spectroscopic Analysis of Cfa,
  • UV-Visible Analysis of Cfa,
  • DSC Analysis of Cfa,
  • Crystallite Size of 3Chloro 4Fluoroaniline,
  • DSC Thermogram of Cfa,
  • TGA Thermogram of Cfa,
  • Thermal Analysis of 3Chloro 4Fluoroaniline,
  • Spectral Properties of Cfa,
  • Analysis of 3-Chloro 4-Fluoroaniline
Publication Date
October 15, 2015
DOI
10.4172/2157-7544.1000151
Citation Information
Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Biofield Energy Treatment: A Potential Strategy for Modulating Physical, Thermal and Spectral Properties of 3-Chloro-4-fluoroaniline. J Thermodyn Catal 6: 151. doi:10.4172/2157-7544.1000151
Creative Commons license
Creative Commons License
This work is licensed under a Creative Commons CC_BY-NC-SA International License.