Skip to main content
Article
Physical, Thermal and Spectral Properties of Biofield Treated 3-Nitroacetophenone
Science Journal of Analytical Chemistry (2015)
  • Dahryn Trivedi
Abstract
3-Nitroacetophenone (3-NAP) is an organic compound used as an intermediate for the synthesis of pharmaceutical agents. The aim of this study was to evaluate the impact of biofield energy treatment on the physical, thermal and spectral properties of 3-NAP. The study was performed in two groups i.e. control and treated. The control group remained as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment. The control and treated 3-NAP samples were further characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser particle size analyzer, surface area analyzer, Fourier transform infrared (FT-IR) spectroscopy, and ultra violet-visible spectroscopy (UV-vis) analysis. The XRD analysis showed decrease in crystallite size of treated 3-NAP by 20.27% as compared to the control sample. However, the XRD peaks of treated sample showed an increase in intensity as compared to the control. The DSC result showed a slight increase in melting temperature of treated 3-NAP (80.75ºC) with respect to the control (79.39ºC). The latent heat of fusion of treated 3-NAP was changed by 16.28% as compared to the control sample. The TGA analysis showed an increase in onset temperature of treated sample (192ºC) as compared to the control sample (182ºC). Further, the maximum thermal decomposition temperature (Tmax) of treated 3-NAP was increased as compared to the control. This showed the increase in thermal stability of treated 3-NAP with respect to control. The treated 3-NAP showed an increase in average particle size (d50) by 27.6% along with an increase in size exhibited by 99% of particles (d99) by 4.9% as compared to the control. Brunauer-Emmett-Teller (BET) analysis showed a substantial decrease in surface area by 24.6% with respect to the control. The FT-IR analysis showed an emergence of peak at 1558 cm-1 in treated 3-NAP sample as compared to the control. Nevertheless, the UV spectral analysis of treated 3-NAP showed no alterations in absorption peaks as compared to the control. Altogether, the result showed that biofield energy treatment has altered the physical, thermal and spectral properties of treated 3-NAP as compared to the control.

Keywords
  • Trivedi Effect,
  • The Trivedi Effect,
  • Mahendra Kumar Trivedi,
  • Mahendra Trivedi,
  • Biofield,
  • Biofield Treatment,
  • X-Ray Diffraction,
  • 3-Nitroacetophenone,
  • Thermal Analysis,
  • Laser Particle Size Analysis,
  • Surface Area Analysis,
  • Fourier Transform Infrared Spectroscopy,
  • Ultra Violet-Visible Spectroscopy,
  • 3-Nap,
  • Crystallite Size,
  • Intermediate for Synthesis of Pharmaceutical Agents,
  • Class of Antitrypanosomal Drug Candidates,
  • Intermediate for The Synthesis of Flurbiprofen,
  • Pharmaceutical Stability
Publication Date
October 15, 2015
DOI
10.11648/j.sjac.20150306.11
Citation Information
Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Rakesh Kumar Mishra, Snehasis Jana. Physical, Thermal and Spectral Properties of Biofield Treated 3-Nitroacetophenone. Science Journal of Analytical Chemistry. Vol. 3, No. 6, 2015, pp. 71-79. doi: 10.11648/j.sjac.20150306.11
Creative Commons license
Creative Commons License
This work is licensed under a Creative Commons CC_BY-NC-SA International License.