Auction Design for the Rescue Plan

Lawrence M. Ausubel
Peter Cramton
University of Maryland
5 October 2008

Copyright © 2008 by Lawrence M. Ausubel and Peter Cramton. All rights reserved.
Problem: Illiquidity

- Trillions of $ in mortgage-backed securities and other assets that have little or no liquidity
- Financial companies that hold the assets have little ability to lend
Legislation

- Treasury purchases $700 billion of assets
- Key questions
 - What to buy?
 - At what price?
Objectives

- Provide quick and effective means to purchase troubled assets and increase liquidity
- Get price related to value (i.e. protect the taxpayer)
- Use transparent rules-based process with minimal scope for discretion and favoritism
One approach: single auction for many securities

- Government buys many securities together
- Price starts high; holders offer securities
- Price falls as long as excess supply
- Clearing price is say 30 cents on dollar
- Government has just bought worst-of-the-worst
 - Paid 30 cents for all securities worth between 0 and 30 cents
Problem

• The securities differ
 ▪ Some are good; some are okay; some are worthless

• Can’t treat them as if they are the same, with single price
 ▪ Severe adverse selection problem

• Problem can be ameliorated if values can be reliably scored
 ▪ But there exists no reliable data or methodology to assess value
 ▪ Any effort to determine reference prices may take a long time

• Inaccurate scores create a similar adverse selection
 ▪ Government buys the securities that are worth the least relative to their scored values
A two-part reverse auction plan

• First, simultaneous descending CUSIP-by-CUSIP auctions are run for each feasible security
 ▪ “Feasible” means holdings are sufficiently diffuse to support a reasonably competitive auction
 ▪ Only some, but not all, of each security is auctioned (e.g. 50%)

• Prices from the auctioned securities are regressed on all available characteristics, and are used to develop reference prices for the remaining securities

• Second, pooled auctions are run for the remaining securities
 ▪ Bidding occurs on discounts or premiums to the reference prices derived from the initial auctions
 ▪ Bidders with greatest need for liquidity are most likely to win
Advantages of two-part plan

- CUSIP-by-CUSIP auctions, when feasible, do not require any value information or other external information.
- Hence, they can be run when needed (October!)
- Prices developed for individual securities can help to unfreeze the market (if government purchases 50%, private parties may assist with the remainder).
- There is a built-in methodology for determining reference prices.
- Competition between CUSIPs is exerted for securities where within-CUSIP competition is inadequate.
Preliminaries

• Treasury announces auction for a class of securities
• Holders nominate quantities of each
 ▪ Bidders forbidden to sell nominated quantities until auction
• Treasury announces demand for each security
 ▪ Quantity demanded capped to assure competition

Last two steps done shortly before auction
Part I: Separate auction for each security

• To create competition, Treasury buys only a fraction of security (e.g. 50%)
 ▪ If Treasury instead bought close to 100%, bidders would have strong incentive to reduce their quantities strategically and thereby obtain 100 cents on dollar

• Clearing price is such that some owners willing to sell, but some owners willing to hold. Thus, price is related to value, and the cost to Treasury is minimized

• The “winners” are those who value the security the least (or value liquidity the most)
Multiple benefits

- Liquidity goes directly to those who value it most
- Price revelation improves liquidity for everyone
- Secondary market is restored
- Creates information that Treasury can use in subsequent auctions
How much to buy of each security?

- Cap demand to assure a competitive auction
- Cap demand so don’t buy too much of any particular security
Three pivotal seller rule

To assure a competitive auction, *cap demand at sum of nominated quantities other than the three largest*

- Guarantees at least four bidders competing for every share
- Demand does not reveal much about concentration

- Based on three pivotal supplier test used in largest US electricity market (PJM) since 2005
 - Auction viewed as competitive whenever demand can be fully satisfied by bidders other than three largest
 - Applied in daily uniform-price auctions where number of bidders is limited by transmission constraints
Three pivotal seller rule

- All quantities in million dollars of security face value
- Cap demand to assure a competitive auction
 - Nominated quantity of bidder \(i = q_i, \ i = 1, \ldots, n \)
 - Listed in descending order: \(q_1 \geq q_2 \geq \ldots \geq q_n \)
 - Total nominated quantity = \(Q = q_1 + q_2 + \ldots + q_n \)
 - Demand for a competitive auction = \(Q - q_1 - q_2 - q_3 \)
- Cap demand so don’t buy too much of any particular security
 - Issued face-value quantity = \(F \geq Q \)
 - Demand no more than fraction \(x \) of \(F \) (e.g., \(x = 50\% \))
- Demand = \(D = \min \{Q - q_1 - q_2 - q_3, xF\} \)
Simulation of quantity purchased
(holdings drawn from either uniform or beta distributions)

Percent of shares purchased by number of bidders
(mean ± 2 standard deviations)

Uniform Distribution $\sim U[0,1]$

Beta Distribution $\sim Beta(1,3)$
Descending-clock auction

- Since it’s an auction to buy rather than sell (a reverse auction), price descends
- Auction is conducted in discrete rounds
- Auctioneer announces price for each security
- Bidders submit quantities for each security
- Activity rule: Quantity cannot increase as the price falls
- Aggregate supply, but not individual bids, announced to bidders
- Auctioneer decrements price for each security
- Process continues until supply equals demand
Auction mechanics

Price (cents) vs. Aggregate Supply

- Round 1
- Round 2
- Round 3
- Round 4
- Round 5
- Round 6

Closing Price

Demand vs. Quantity (million $)

- P1
- P2
- P3
- P4
- P5
- P6

17
Closing with overshoot

Price (cents) vs. Aggregate Supply

- Round 1
- Round 2
- Round 3
- Round 4
- Round 5
- Round 6

Closing Price

Demand

Quantity (million $)
Intraround bids
Intraround bidding – one bidder

Price (cents)

Quantity offered by a Bidder

P\text{start}
P1
P2
P3
P4
P5
P6

P1
P2
P3
P4
P5
P6

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6

Quantity (million $)
Intraround bidding – aggregate supply

Price (cents)

P_{start} (50 cts)

P1

P2

P3

P4

P5

Closing Price (31 cts)
P6 (30 cts)

Aggregate Supply

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Exact Clearing

Demand
Quantity (million $)
Demand may depend on price

Price (cents)

Aggregate Supply

P_{start} (50 cts)

P1

P2

P3

P4

Closing Price

P5

Demand

Quantity (million $)

Round 1

Round 2

Round 3

Round 4

Round 5
Handling many securities

- Related securities grouped together in a single auction
- Simultaneous descending clock
- Price clock for each security
- Allows arbitrage across securities and better management of liquidity needs
- Can auction 100 (or more) securities simultaneously, completing all in a single day
 - No positions held open overnight
Security-by-Security Auction

quantity in $25,000 of face value; price in cents on the dollar

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Round</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>1,000</td>
<td>1,200</td>
<td>2,000</td>
<td>1,500</td>
<td>800</td>
<td>2,500</td>
<td>1,000</td>
<td>1,200</td>
</tr>
<tr>
<td>1</td>
<td>Price</td>
<td>98.00</td>
<td>96.00</td>
<td>87.00</td>
<td>98.00</td>
<td>75.00</td>
<td>66.00</td>
<td>67.00</td>
</tr>
<tr>
<td></td>
<td>Supply</td>
<td>2,300</td>
<td>3,120</td>
<td>6,000</td>
<td>6,000</td>
<td>2,800</td>
<td>5,500</td>
<td>1,500</td>
</tr>
<tr>
<td>2</td>
<td>Price</td>
<td>90.00</td>
<td>88.00</td>
<td>80.00</td>
<td>90.00</td>
<td>69.00</td>
<td>61.00</td>
<td>63.00</td>
</tr>
<tr>
<td></td>
<td>Supply</td>
<td>2,000</td>
<td>2,160</td>
<td>5,000</td>
<td>4,500</td>
<td>2,400</td>
<td>5,250</td>
<td>1,500</td>
</tr>
<tr>
<td>3</td>
<td>Price</td>
<td>83.00</td>
<td>82.00</td>
<td>74.00</td>
<td>83.00</td>
<td>63.00</td>
<td>56.00</td>
<td>60.00</td>
</tr>
<tr>
<td></td>
<td>Supply</td>
<td>2,000</td>
<td>1,920</td>
<td>4,400</td>
<td>3,300</td>
<td>1,680</td>
<td>4,000</td>
<td>1,400</td>
</tr>
<tr>
<td>4</td>
<td>Price</td>
<td>76.00</td>
<td>77.00</td>
<td>68.00</td>
<td>76.00</td>
<td>58.00</td>
<td>53.00</td>
<td>57.00</td>
</tr>
<tr>
<td></td>
<td>Supply</td>
<td>1,700</td>
<td>1,560</td>
<td>3,600</td>
<td>2,850</td>
<td>1,280</td>
<td>4,000</td>
<td>1,200</td>
</tr>
<tr>
<td>5</td>
<td>Price</td>
<td>71.00</td>
<td>74.01</td>
<td>63.00</td>
<td>70.00</td>
<td>55.00</td>
<td>50.00</td>
<td>55.71</td>
</tr>
<tr>
<td></td>
<td>Supply</td>
<td>1,400</td>
<td>1,200</td>
<td>2,800</td>
<td>2,250</td>
<td>1,040</td>
<td>3,000</td>
<td>1,000</td>
</tr>
<tr>
<td>6</td>
<td>Price</td>
<td>67.00</td>
<td>60.00</td>
<td>66.00</td>
<td>53.24</td>
<td>48.78</td>
<td>55.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supply</td>
<td>1,200</td>
<td>2,600</td>
<td>1,650</td>
<td>800</td>
<td>2,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Price</td>
<td>64.72</td>
<td>57.32</td>
<td>63.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supply</td>
<td>1,000</td>
<td>2,000</td>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Excess supply

Security clears
Why open (vs. sealed-bid)?

- Information revealed during auction reduces winner’s curse
 - Strong common-value element means flatter supply curve with better information
 - Bidders respond by bidding more aggressively
- Bidders can condition their bids for one security on bidding that develops on other securities
 - Can better manage liquidity needs and portfolio risk
 - By contrast, bidders cannot do this in simultaneous sealed-bid auctions
- Transparency is paramount
Why uniform price (vs. pay-as-bid)?

- General assessment is that uniform price performs at least as well as pay-as-bid for financial instruments
 - That was the Treasury’s assessment, in changing the format of T-bill auctions
- Bidders hate pay-as-bid auctions, as they look foolish (or unemployed) after selling at unnecessarily low prices
 - Creates an extra reason for bidders to try to collude
- Uniform-price is ordinarily used in dynamic auctions
Why simultaneous?

- Different securities’ values are determined, in part, by the same factors (e.g. systemic risk). Hence, the bidding on one security is useful information for other securities.
- Bidders can condition their bids for one security on the bidding for other securities.
- Bidders can manage liquidity needs and portfolio risk.
- Generates better pricing information than sequential auctions.
 - Makes maximum information available to bidders.
 - Avoids pricing anomalies such as the “afternoon effect.”
Participation

- All holders of security can offer to sell
 - Small holders through proxy bid

- Can include buyers other than Treasury
 - Demand bids submitted in advance of auction
Part II: Pooled auction for other securities

- Securities with holdings too concentrated for separate auctions are pooled together
- Bidding occurs on discount or premium to reference prices for each security (price = % of reference price)
 - Reference prices estimated by regressing the results of CUSIP-by-CUSIP auctions on all available characteristics
- A single descending clock (same discount or premium applicable to all securities in auction)
- Clearing occurs when cost of purchasing securities bid in auction equals the allocated budget
- Otherwise, same as CUSIP-by-CUSIP auction
Example with 2 pools of 4 securities each

<table>
<thead>
<tr>
<th>Round</th>
<th>Budget</th>
<th>HQ Pool</th>
<th>Higher-Quality Pool</th>
<th>LQ Pool</th>
<th>Lower-Quality Pool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$120</td>
<td>90.35</td>
<td>84.25</td>
<td>81.78</td>
<td>89.11</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>110%</td>
<td>99.39</td>
<td>92.68</td>
<td>89.96</td>
</tr>
<tr>
<td></td>
<td>Spend</td>
<td>$176</td>
<td>1,703</td>
<td>2,343</td>
<td>1,978</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>107%</td>
<td>96.67</td>
<td>90.15</td>
<td>87.50</td>
</tr>
<tr>
<td></td>
<td>Spend</td>
<td>$155</td>
<td>1,647</td>
<td>2,145</td>
<td>1,837</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>104%</td>
<td>93.96</td>
<td>87.62</td>
<td>85.05</td>
</tr>
<tr>
<td></td>
<td>Spend</td>
<td>$146</td>
<td>1,603</td>
<td>2,121</td>
<td>1,801</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>102%</td>
<td>92.16</td>
<td>85.94</td>
<td>83.42</td>
</tr>
<tr>
<td></td>
<td>Spend</td>
<td>$136</td>
<td>1,521</td>
<td>1,945</td>
<td>1,777</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>100%</td>
<td>90.35</td>
<td>84.25</td>
<td>81.78</td>
</tr>
<tr>
<td></td>
<td>Spend</td>
<td>$131</td>
<td>1,489</td>
<td>1,922</td>
<td>1,733</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>98.20%</td>
<td>88.72</td>
<td>82.73</td>
<td>80.31</td>
</tr>
<tr>
<td></td>
<td>Spend</td>
<td>$120</td>
<td>1,475</td>
<td>1,744</td>
<td>1,521</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>93.68%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spend</td>
<td>$80</td>
<td>955</td>
<td>2,256</td>
<td>1,145</td>
</tr>
</tbody>
</table>

Pooled Auction

- Excess supply
- Pool clears

quantities in $25,000 of face value; price in % of reference price; spend in million $
Advantages of pooled auction as part II

- Pooled auction takes full advantage of information revealed in separate auctions
 - Improves accuracy of references prices
 - Reference prices determined from transparent market process
- With more accurate reference prices:
 - Taxpayer gets a better deal
 - Liquidity goes to those in greatest need
- Provides time for reference price model and data to be developed while single-security auctions are being held
Potential enhancements to pooled auction

- Sellers could be required to bundle securities in fixed proportions before learning the reference prices.

- Cumulative purchases of each security could be capped at a fixed percentage of face value (e.g. 50%).

- Ex-post performance measures:
 - Contract could require seller to repay the difference if Treasury takes a loss on securities.
 - Backed by stock warrants or senior debt instruments.

- Self-selecting tariff: Sellers could be offered choice, e.g., of selling half of a security at 40 cents on dollar or all of a security at 30 cents on dollar.
Feasibility

• Over last ten years, there is extensive experience with auctions of this form
 ▪ Electricity contracts
 ▪ Gas contracts
 ▪ Telecom spectrum
 ▪ Emission allowances
• Can be implemented in short time-frame
• Many examples of success
Conclusion

• A well-designed auction process can:
 ▪ Provide quick and effective means to purchase securities and increase liquidity
 ▪ Get best prices for taxpayers
 ▪ Use transparent rules with minimal scope for discretion and favoritism
Appendix:
Examples of Similar Auctions
Electricity Auctions

- EDF generation capacity auctions
 - Virtual power plants — 6 GW of French electricity
 - 29 quarterly auctions (Sept 2001 – present) totaling over €9 billion
- Electrabel VPP capacity auctions
 - Virtual power plants — 1.2 GW of Belgian electricity
 - 7 quarterly auctions (Dec 2003 – May 2005)
- Endesa-Iberdrola VPP auctions
 - For the two dominant Spanish electricity companies
 - 5 quarterly auctions and 1 biannual auction (June 2007 – present)
- ISO-New England Forward Capacity Auction
 - Very large auction: $1.75 billion in value annually; more than 100 bidders
 - Procurement of generating capacity in six-state New England region
 - First auction was in February 2008; under contract for four years
Gas Auctions

- German gas release program (E.ON Ruhrgas)
 - Series of six annual auctions (2003 – 2008)
- Gaz de France gas release program
 - Single auction (Oct 2004)
- Total gas release program
 - Single auction (Oct 2004)
- Gaz de France gas storage auction
 - Single auction (Feb 2006)
- Hungary gas release program (E.ON Ruhrgas)
 - Series of five annual auctions (2006 – 2010)
- Danish Oil and Natural Gas gas release program
 - Series of six annual auctions (2006 – 2011)
Other Auctions

- Internet Corporation for Assignment of Names and Numbers (ICANN)
 - Single letter second level domains, global top level domains (2008)
- Federal Aviation Administration airport slot auction
 - Demonstration auction for industry (2005)
- Trinidad and Tobago spectrum auction
 - Clock followed by combinatorial auction (2005)
- UK emissions trading scheme auction
 - World’s first auction for greenhouse gas emission reductions (2002)
- Spectrum Exchange auction for clearing spectrum
 - Prototype auction for US spectrum (2000)
EDF Generation Capacity Auctions
Typical EDF VPP Auction

- Number of products
 - Two to four groups (baseload, peakload, etc.)
 - 20 products (various durations and start-dates)
- Number of bidders
 - 40 bidders
 - 15 to 20 winners
- Duration
 - Eight to ten rounds (one day)
- €300 million in value transacted in a typical quarterly auction
German Gas Release Programme Auctions (E.ON Ruhrgas)
E.ON Ruhrgas Auction

- Single product
- Number of bidders
 - 30 to 40 bidders
 - 7 winners
- Duration
 - Seven rounds (one day)
- Reserve price (binding in early years)
- In excess of €500 million in value transacted in a single annual auction
Typical Auction Related Activities

- Information Release: Documentation, Web-site, Conference etc.
- Product design
- Auction methodology
- Definition of detailed Auction Rules
- Auction software specification, development and testing
- Bidder qualification
- Bidder training: user guide and practice run
- Establishment of auction ‘war room’
- Operation of auction
- Post-auction reports on success of auction and possible improvements for future auctions
Further Information on Similar Auctions

- Power Auctions LLC: http://www.powerauction.com
- Market Design Inc: http://www.marketdesign.com
- ISO-NE FCM Auction: http://www.iso-ne.com
- Spanish VPP Auction: http://www.subasta-epe.com