Introduction

- Many related (divisible) goods
 - Airport slots (time, airport)
 - Spectrum (bandwidth, location)
 - Electricity (duration, location, strike price)
 - Financial securities (duration)
 - Emissions (duration, type)

- A practical combinatorial auction, as an alternative to the simultaneous ascending auction (SAA)
Auction takeoff/landing slots at LaGuardia

In 2000, LaGuardia caused 25% of all US Delays
Application: Airport Slots

- Proposed design
 - 8 slots in each 15 minute period from 6:00am through 10:00pm, with one slot reserved for unscheduled flights
 - 20% auctioned each year with 5-year term
 - A slot provides the right to schedule an arrival within a given 15 minute period and a departure any time within 90 minutes after landing
 - Clock-proxy auction (now to be described)

Application: Spectrum Auction

- Trinidad and Tobago (23 June 2005)
 - Clock determines
 - Two license winners
 - Minimum price of bandwidth ($/block)
 - Proxy round determines size of licenses and specific band plan
Clock Auction

- Auctioneer names prices; bidders name only quantities
 - Price adjusted according to excess demand
 - Process repeated until market clears
- No exposure problem (package auction)

Proxy Auction

- A procedure for package bidding
 - Bidders input their values into “proxy agents”
 - Proxy agents iteratively submit package bids, selecting best profit opportunity according to the inputted values
 - Auctioneer selects provisionally-winning bids according to revenue maximization
 - Process continues until the proxy agents have no new bids to submit
Clock-Proxy Auction

- A clock auction, followed by a “final round” consisting of a proxy auction
 - Bidders directly submit bids in clock auction phase
 - When clock phase concludes, bidders have a single opportunity to input proxy values
 - Proxy phase concludes the auction

Clock-Proxy Auction

- All bids are kept “live” throughout auction (no bid withdrawals)
- Bids from clock phase are also treated as package bids in the proxy phase
- All bids are treated as mutually exclusive (XOR)
- Activity rules are maintained within clock phase and between clock and proxy phases
Advantages of Clock-Proxy Auction

- **Clock phase**
 - Simple for bidders
 - Provides price discovery
 - Interdependent values
 - Economize on package evaluation costs

- **Proxy phase**
 - Efficient allocations
 - Competitive revenues
 - Reduces opportunities for collusion

Clock Auction
Practical implementation of the fictitious “Walrasian auctioneer”

- Auctioneer announces a price vector
- Bidders respond by reporting quantity vectors
- Price is adjusted according to excess demand
- Process is repeated until the market clears

Strengths

- Simple for bidders
- Provides highly-usable price discovery
- Yields similar outcome as SAA, but faster and fewer collusive opportunities
- A package auction without complexity

Weaknesses

- Limits prices to being linear
- Therefore should not yield efficient outcomes
Recent Clock Auctions

- **EDF generation capacity (virtual power plants)**
 - 16 quarterly auctions (Sep 2001 – present)
- **Electrabel generation (virtual power plants)**
 - 7 quarterly auctions (Dec 2003 – present)
- **Ruhrgas gas release program**
 - 3 annual auctions (2003 – present)
- **Trinidad and Tobago spectrum auction**
 - 1 auction (June 2005)
- **Federal Aviation Administration airport slot auction**
 - 1 demonstration auction (Feb 2005)
- **UK emissions trading scheme**
 - World’s first greenhouse gas auction (Mar 2002)
- **GDF and Total gas release program**
 - 2 auctions (Oct 2004)

Recent Clock Auctions

- **New Jersey basic generation service**
 - 5 annual auctions (2002 – present)
- **Texas electricity capacity**
 - 16 quarterly auctions (Sep 2001 – present)
- **Austrian gas release program**
 - 3 annual auctions (2003 – present)
- **Nuon generation capacity**
 - 1 auction (September 2004)
EDF Generation Capacity Auction

Typical EDF Auction

- **Number of products**
 - Two to four groups (baseload, peakload, etc.)
 - 20 products (various durations)

- **Number of bidders**
 - 30 bidders
 - 15 winners

- **Duration**
 - Eight to ten rounds (*one day*)

- **€300 million in value transacted in auction**
Electrabel VPP Capacity Auction

Typical Electrabel Auction

- **Number of products**
 - Two groups (baseload, peakload)
 - 20 products (various durations and start dates)

- **Number of bidders**
 - 14 bidders
 - 7 winners

- **Duration**
 - Seven rounds (*one day*)

- €100 million in value transacted in auction
Issue 1: Discrete bidding rounds are helpful for maintaining legally-binding bids, but they can yield slow auctions or “overshoot”

- SOLUTION: Intra-round bids: If the (end) price of Round 3 is €19,000 and the (end) price of Round 4 is €19,500 for baseload, and if the (end) price of Round 3 is €10,300 and the (end) price of Round 4 is €10,600 for peakload, then bidders in Round 4 submit demand curves for all price pairs from (€19,000, €10,300) to (€19,500, €10,600).
1 Product introducing intra-round bidding

1 product – Individual bids with intra-round bidding
1 product – Aggregate demand with intra-round bidding

Sample (redacted) data 1
Sample (redacted) data 2

Issues in Implementing Clock Auctions

Issue 2: Treatment of bids which would make aggregate demand < supply

- Example: For a particular item, demand = supply, but the price of a complementary item increases. A bidder wishes to reduce its demand
 - Naive approach: Prevent the reduction

- Example: For a particular item, demand > supply, but demand < supply at next increment
 - Naive approach: Ration the bidders
Issue 2: Treatment of bids which would make aggregate demand < supply

- Example: For a particular item, demand = supply, but the price of a complementary item increases. A bidder wishes to reduce its demand
 - Difficulty: Creates an exposure problem

- Example: For a particular item, demand > supply, but demand < supply at next increment
 - Difficulty: Creates an exposure problem

- Our approach: Allow the reduction

- Our approach: No rationing
Issue 2: Treatment of bids which would make aggregate demand < supply

- Bids in clock phase are treated as package bids
- Thus, our clock auctions are, in fact, combinatorial auctions
- Advantage: No exposure problem
- Disadvantage: Potential significant undersell
 (But not a problem in the clock-proxy auction, since clock phase followed by a final proxy round)

Issue 3: Activity rules

- Prevent a bidder from hiding as a “snake in the grass” to conceal its true interests
- Standard approaches:
 - No activity rule (laboratory experiments)
 - Monotonicity in quantities (SAA and clock auctions in practice)
Issue 3: Activity rules

- Revealed-preference activity rule (advocated here)

- Compare times s and t ($s < t$),

 Prices: p^s, p^t
 Demands: x^s, x^t

 - At time s, x^s is better than x^t:
 $$v(x^s) - p^s \cdot x^s \geq v(x^t) - p^s \cdot x^t$$

 - At time t, x^t is better than x^s:
 $$v(x^t) - p^t \cdot x^t \geq v(x^s) - p^t \cdot x^s$$

 - Adding inequalities yields the RP activity rule:
 $$(RP) \quad (p^t - p^s) \cdot (x^t - x^s) \leq 0 .$$

- Bid placed at time t must satisfy (RP) with respect to its prior bids at all prior times s ($s < t$):
 $$(RP) \quad (p^t - p^s) \cdot (x^t - x^s) \leq 0 .$$

- One can also apply a “relaxed” RP in proxy phase (with respect to bids in the clock phase)
Proxy Auction

Package Bidding

- Package bidding often motivated by complements
- Even without complements, package bidding may improve outcome by eliminating “demand reduction”
 - In SAA, bidders may have strong incentives to reduce demands in order to end auction at low prices
Ascending Proxy Auction

- Each bidder reports its values (and constraints) to a “proxy agent”, in a sealed-bid round
- The proxy agents bid in an auction in “virtual time”
- The proxy agent’s rule: submit the allowable bid that, if accepted, would maximize the bidder’s payoff (evaluated according to its reported values)
- The virtual auction ends after a round with no new bids by the proxy agents

Outcomes in the Core

- The coalitional form game is \((L,w)\), where...
- \(L\) denotes the set of players.
 - the seller is \(l = 0\)
 - the other players are the bidders
- \(w(S)\) denotes the value of coalition \(S\):
 - If \(S\) excludes the seller, let \(w(S)=0\)
 - If \(S\) includes the seller, let
 \[
 w(S) = \max_{x \in X} \sum_{i \in S} v_i(x_i)
 \]
- The \(Core(L,w)\) is the set of all profit allocations that are \textit{feasible} for the coalition of the whole and \textit{cannot be blocked} by any coalition \(S\)
Outcomes in the Core

Theorem: The payoff vector resulting from the proxy auction is in the core relative to the reported preferences.

Interpretations:

- Core outcome assures competitive revenues for seller
- Core outcome assures allocative efficiency (ascending proxy auction is not subject to inefficient demand reduction)

Outcomes in the Core

Theorem: If π is a bidder-Pareto-optimal point in $\text{Core}(L,w)$, then there exists a full information Nash equilibrium of the proxy auction with associated payoff vector π.

These equilibria may be obtained using strategies of the form: bid your true value minus a nonnegative constant on every package
Case of Substitutes

- If goods are substitutes, then Vickrey payoff profile is unique bidder-Pareto-optimal point in core.
- Outcome of the ascending proxy auction coincides with outcome of the Vickrey auction.

Case of Non-Substitutes

- If goods are not substitutes, then Vickrey payoff profile is not in core.
- Ascending proxy auction yields a different outcome from the Vickrey auction (one with higher revenues).
Proxy Auction Avoids Vickrey Problems

- In Vickrey auction:
 - Adding a bidder can reduce revenues
 - Using a shill bidder can be profitable
 - Losing bidders can profitably collude
- Proxy auction avoids these problems

Clock-Proxy Auction
Clock-Proxy Auction

- A simultaneous clock auction is conducted, with a revealed-preference activity rule imposed on bidders, until (approximate) clearing is attained
- A proxy auction is conducted as a “final round”
 - Bids submitted by proxy agents are restricted to satisfy a relaxed revealed-preference activity rule based on competitive conditions
 - Bids from clock phase are also treated as “live” package bids in proxy phase
 - All package bids (clock and proxy) are treated as mutually exclusive, and auctioneer selects as provisionally-winning the bids that maximize revenues

Relaxed Revealed Preference Activity Rule

- Let s be a time in clock phase and t a time in proxy phase
- Package S is bid on at time s and T is bid on at time t
- $P^s(S)$ and $P^s(T)$ package prices of S and T at time s
- $P^t(S)$ and $P^t(T)$ package prices of S and T at time t
- At every time t in the proxy phase, the bidder can bid on the package T only if (RRP) is satisfied for every package S bid at time s in the clock phase
- (RRP) $\alpha[P^t(S) - P^s(S)] \geq P^t(T) - P^s(T)$
- $\alpha > 1$ is parameter (closer to 1 if more competitive environment)
- For $\alpha = 1$, price of S increased more than price of T; otherwise S would be more profitable than T.
- Alternatively, state RRP as a constraint on valuations reported to proxy: $v(T) - P^t(T) \leq \alpha(v(S) - P^s(S))$
Why Not Use the Proxy Auction Only?

- Clock auction phase yields price discovery
- Feedback of linear prices is extremely useful to bidders
- Clock phase makes bidding in the proxy phase vastly simpler
 - Focus decision on what is relevant
 - See what you don't need to consider
 - See what looks like good possibilities

Why Not Use the Clock Auction Only?

- Proxy auction ends with core outcome
 - Efficient allocation
 - Competitive revenues
- No demand reduction
- Collusion is limited
 - Relaxed activity rule means allocation still up for grabs in proxy phase
Advantages of the Clock over the SAA

- Clock auction is a fast and simple process (compared to the simultaneous ascending auction)
 - Only provide information relevant for price and quantity discovery (excess demand)
 - Takes advantage of substitutes (one clock for substitute licenses)
 - Example:
 - proposed 90 MHz of 3G spectrum in 5 blocks: 30, 20, 20, 10, 10
 - clock alternative: 9 or 18 equivalent blocks per region
 - Fewer rounds
 - Get increment increase for all items, rather than having to cycle through over many rounds
 - “Intra-round bids” allow larger increments, but still permit expression of demands along line segment from start-of-round price to end-of-round price

Advantages of the Clock over the SAA

- Clock auction limits collusion (compared to the simultaneous ascending auction)
 - Signaling how to split up the licenses greatly limited
 - No retaliation (since no bidder-specific information)
 - No stopping when obvious split is reached (since no bidder specific information)
 - Fewer rounds to coordinate on a split
Advantages of the Clock Phase

- No exposure problem (unlike SAA)
 - As long as at least one price increases, bidder can drop quantity on other items
 - Bidder can safely bid for synergistic gains
 - Bid is binding only as full package

- Limited threshold problem (unlike ascending package auction)
 - Clocks controlled by auctioneer: no jump bids; large bidder cannot get ahead
 - Linear pricing: small bidders just need to meet price on single item

Clock-Proxy Auction

- Combines advantages of
 - Clock auction
 - Proxy auction

- Excellent price discovery in clock phase simplifies bidder decision problem

- Proxy phase enables bidders to fine-tune allocation based on good price information
Advantages of Clock-Proxy Auction

Clock
- Take linear prices as far as they will go
- Simplicity and flexibility for bidders and auctioneer
- Expand substitution possibilities
- Minimize scope for collusion
- No exposure problem; no threshold problem

Proxy
- Core outcome
 - Efficiency
 - Substantial seller revenues