Spectrum Auction Design

Peter Cramton*

Professor of Economics, University of Maryland 23 April 2009

*I thank my collaborators, Larry Ausubel and Paul Milgrom for helpful discussions, as well as Robert Day, Evan Kwerel, Thayer Morrill, Nate Higgins, and Andrew Stocking. I thank the staff at Ofcom, especially Graham Louth, Director of Spectrum Markets, whose leadership and intellectual contribution were essential to the successful implementation of the package clock auction. I am grateful to the National Science Foundation and the Rockefeller Foundation for funding.

Market design

- Establishes rules of market interaction
- Economic engineering
- Economics
- Computer science
- Operations research
- Applications
- Matching
- Auctions (matching with prices)

Market design fosters innovation

- Improving price information
- Enhancing competition
- Mitigating market failures

Applications

- Emission allowance auctions
- Airport slot auctions
- Spectrum auctions
- Electricity and gas markets
- Global financial crisis
- Green energy projects

Introduction

- Auction design
- Government perspective (design)
- Bidder perspective (strategy)
- Based on my experience
- Researching auctions
- Advising governments (12)
- Advising bidders (31)

Application: Spectrum auctions

- Many items, heterogeneous but similar
- Competing technologies
- Complex structure of substitutes and complements
- Long-term market
- Government objective: Efficiency
- Make best use of scarce spectrum
- Recognizing competition issues in downstream market

Main points

- Enhance substitution
- Product design
- Auction design
- Encourage price discovery
- Dynamic price process to focus valuation efforts
- Induce truthful bidding
- Pricing rule
- Activity rule

Simultaneous

 ascending auction
Simultaneous ascending auction

- Simultaneous
- All lots at the same time
- Ascending
- Can raise bid on any lot
- Stopping rule
- All lots open until no bids on any lot
- Activity rule
- Must be active to maintain eligibility

Simultaneous ascending auction

- Strengths
- Simple price discovery process
- Allows arbitrage across substitutes
- Piece together desirable packages
- Reduces winner's curse
- Weaknesses
- Demand reduction
- Tacit collusion
- Parking
- Exposure
- Hold up
- Limited substitution
- Complex bidding strategies

Limited substitution: US AWS $90 \mathrm{MHz}, 161$ rounds, $\$ 14$ billion

Limited substitution: 700 MHz $62 \mathrm{MHz}, 261$ rounds, $\$ 19.6$ billion

Block	A	B	C
Bandwidth	12 MHz	12 MHz	22 MHz
Type	paired		
paired			
paired			
Partition	176	734	12
Price	$\$ 1.16$	$\$ 2.68$	$\$ 0.76$

Winning bids and price by block and bidder

A better way

Needed enhancements

- Anonymous bidding
- Generic lots
- Package bidding with clock
- Porter-Rassenti-Roopnarine-Smith (2003)
- Ausubel-Cramton (2004)
- Ausubel-Cramton-Milgrom (2006)
- "Second" pricing
- Revealed preference activity rule

Package clock auction

- Auctioneer names prices; bidder names package
- Price adjusted according to excess demand
- Process repeated until no excess demand
- Supplementary bids
- Improve clock bids
- Bid on other relevant packages
- Optimization to determine assignment/prices
- No exposure problem (package auction)
- Second pricing to encourage truthful bidding
- Activity rule to promote price discovery

Example: AWS done right

Task

Rule making

Preference elicitation

Optimization
Preference elicitation
Optimization

- 90 MHz paired spectrum; nine $2 \times 5-\mathrm{MHz}$ lots
- Geographic partition: 176 Economic Areas
- Clock stage
- FCC announces 176 prices
- Each bidder selects best package
- Prices rise where excess demand
- Continues until no excess demand
- Supplementary bids
- Generic assignment; options for specific assignments (contiguous, min border issues)
- Top-up bids
- Specific assignment

US AWS-3

- Two band plans proposed for 2020-2025 MHz and $2155-2180 \mathrm{MHz}$
- TDD (unpaired) Five 5-MHz nationwide lots
- FDD (asymmetric paired) One 5-MHz paired with five $5-\mathrm{MHz}$ lots
- Should FCC offer paired or unpaired spectrum? LTE or WiMAX?
- Better solution: Let auction decide!!

UK
spectrum auctions

UK auctions

$\checkmark 10-40 \mathrm{GHz}$: fixed wireless or backhaul
\checkmark L-Band: mobile broadcast

- 2.6 GHz: 4G mobile wireless (summer'09)
- Digital Dividend: 4G, mobile TV, DTT ('10)

Requirements

- Technology neutral
- Flexible spectrum usage rights
- Efficient assignment

UK 2.6 GHz auction proposal

- 190 MHz (38 lots of 5 MHz)
- How much paired vs. unpaired?

CEPT band plan from Electronic Communications Committee Decision (05)05

Let auction determine band plan

Increase in unpaired spectrum maintaining 120 MHz duplex spacing

All unpaired spectrum

Key design choices

- Generic 5 MHz lots
- Lots are perfect substitutes
- Package bids
- No exposure problem
- Clock stage
- How many paired? How many unpaired? Supply = 38
- Continue until no excess demand
- Supplementary bids
- Improve clock bids; add other packages
- Principal stage
- Find value maximizing generic assignment and base prices
- Assignment stage
- Contiguous spectrum
- Top-up bid to determine specific assignment

Pricing rule

Pricing rule

- In clock stage? In assignment stage?
- Pay-as-bid pricing
- Incentives for demand reduction, bid shading
- Bidder-optimal core pricing
- Maximize incentives for truthful bidding

Bidder-optimal core pricing

- Minimize payments subject to core constraints
- Core = assignment and payments such that
- Efficient: Value maximizing assignment
- Unblocked: No subset of bidders prefers to offer seller a better deal

Optimization

- Core point that minimizes payments readily calculated
- Solve Winner Determination Problem
- Find Vickrey prices
- Constraint generation method (Day and Raghavan 2007)
- Find most violated core constraint and add it
- Continue until no violation
- Tie-breaking rule for prices is important
- Minimize distance from Vickrey prices

5 bidder example with bids on $\{A, B\}$

- $\mathrm{b}_{1}\{\mathrm{~A}\}=28 \longrightarrow$ Winners
- $b_{2}\{B\}=20$
- $b_{3}\{A B\}=32$ Vickrey prices:
- $b_{4}\{A\}=14 \quad p_{1}=14$
- $b_{5}\{B\}=12 \quad p_{2}=12$

The Core

Vickrey prices: How much can each winner's

 bid be reduced holding others fixed?

Bidder-optimal core prices: Jointly reduce

 winning bids as much as possible

Core point closest to Vickrey prices

Why core pricing?

- Truthful bidding nearly optimal
- Simplifies bidding
- Improves efficiency
- Same as Vickrey if Vickrey in core (substitutes)
- Avoids Vickrey problems with complements
- Prices that are too low
- Revenue is monotonic in bids and bidders
- Minimizes incentive to distort bids

Activity rule

Activity rule: Eligibility points

- Clock stage: Cannot increase package size
- Supplementary bids: Whenever reduce package size, value on all larger packages capped by prices at time of reduction
- Example
- Bidder drops from package of size 10 to 6 at prices p
- For all packages q of size 7 to 10 , bid $\leq q \cdot p$
- Implication
- Profit maximization is poor strategy
- Bid to maximize package size subject to profit ≥ 0

Full-scale test of design

(Maryland and GMU PhD students)

- Experienced subjects
- PhD course in game theory and auctions
- Prior participation in package clock auction
- Motivated subjects
- Average subject payment $=\$ 420$
- Realistic scenarios

Result

- Activity rule causes major deviation from straightforward bidding
- Undermines price discovery
- Reduces efficiency

Activity rule readily fixed: Revealed preference

- At time $\mathrm{t}^{\prime}>\mathrm{t}$, package q_{t}, has become relatively cheaper than q_{t}
(P^{\prime})

$$
q_{t^{\prime}} \cdot\left(p_{t^{\prime}}-p_{t}\right) \leq q_{t^{\prime}} \cdot\left(p_{t^{\prime}}-p_{t}\right)
$$

- Supplementary bid $b(q)$ must be less profitable than revised package bid at t (S')

$$
b(q) \leq b\left(q_{t}\right)+\left(q-q_{t}\right) \cdot p_{t}
$$

Example

- Revealed preference
- Bid on most profitable package (max profit)
- Move up marginal value (demand) curve
- Eligibility point
- Bid on largest profitable package (max size)
- Move up average value curve

Aggregate demand downward sloping \Rightarrow Average value > marginal value

Example with constant elasticity

Weaker bidder

Average Value too much

Comparison of activity rules

- Eligibility points
- Bid on largest profitable package
- Revealed preference
- Bid on profit maximizing package
- Hypothesis
- Profit maximization yields much better price discovery
- Simulate clock auction under each bidding norm to test hypothesis

RP: Higher efficiency from fewer bids

RP: Better price discovery

Price for each round by category. Color shows excess demand. Top two panels have small increments (5% to 15%); bottom two panels have large increments (15% to 30%). Under "profit" case, bidders select the profit maximizing package; under "size" bidders select the size maximizing package subject to a positive profit constraint.

Summary of comparison

- Revealed preference, compared with eligibility point rule, yields
- Substantially higher auction efficiency
- About the same revenue
- Substantially higher bidder profits
- More winners, less concentration
- Better price discovery with final clock prices closer to competitive equilibrium levels

Problem with revealed preference

- Bidders values change over auction as a result of common value uncertainty
- Revealed preference is complex in supplementary round
- Single bid can violate many constraints
- Difficult to see how best to resolve violations

Simplified revealed preference: Include only a few RP constraints

- Clock stage
- Can always shift to smaller packages
- Can shift to a larger package that has become relatively cheaper
- Supplementary bids
- Packages q not larger than the final clock package q_{f} are capped by revealed preference with respect to q_{f}

$$
b(q) \leq b\left(q_{f}\right)+\left(q-q_{f}\right) \cdot p_{f}
$$

- Packages q larger than q_{f} are capped by revealed preference with respect to next smaller package q_{s}

$$
b(q) \leq b\left(q_{s}\right)+\left(q-q_{s}\right) \cdot p_{s}
$$

Properties with substitutes

- Bidding on most profitable package is best
- Clock yields competitive equilibrium with efficient assignment and supporting prices
- No supplementary bids needed
- Final assignment = clock assignment
- Prices reduced to opportunity costs

Properties in general

- Bidding on most profitable package is nearly best
- If no unsold lots at end of clock, then
- Final assignment = clock assignment
- No supplementary bids needed
- If unsold lots at end of clock, then
- Supplementary bids needed
- Clock winner can guarantee it wins final clock package
(raise by final clock price of unsold lots)

Experimental results

- 100\% efficiency in nearly all cases
- Safe strategy adopted by bidders
- Clock stage
- RP: Bid on most profitable package
- EP: Bid on largest profitable package
- Supplementary round
- Bid full value on all relevant packages
- Assignment stage
- Bid incremental value for specific assignments

Model, simulation, and experiment

Conclusion

Conclusion

- Package clock auction
- Eliminates exposure
- Eliminates gaming
- Enhances substitution
- Allows auction to determine band plan
- Readily customized to a variety of settings
- Many other applications (airport slot auctions)

Conclusion

- Harness power of markets
- Improve pricing
- Efficient decisions, short term and long term
- Innovation from price incentives
- Enhance competition
- Price transparency
- Enhanced substitution and liquidity
- Reduced transactions costs
- Mitigate market failures
- Market power, coordination, externalities, ...

